
1个回答
展开全部
Xn=(n!/n^n)^(1/n)
两边取对数,
lnXn=(1/n)*(ln(1/n)+ln(2/n)+ln(3/n)+···+ln(n/n))
上式可看成 f(x)=lnx 在[0,1]上的一个积分和。即对[0,1]
区间作n等分,每个小区间长1/n。
因此当n趋于无穷时,lnXn等于f(x)=lnx在[0,1]上的定积分。
lnx在[0,1]上的定积分为-1
所以 lnXn在n趋于无穷时的极限为-1。
由于 Xn=e^(lnXn),
于是 Xn在n趋于无穷时的极限值为1/e.
两边取对数,
lnXn=(1/n)*(ln(1/n)+ln(2/n)+ln(3/n)+···+ln(n/n))
上式可看成 f(x)=lnx 在[0,1]上的一个积分和。即对[0,1]
区间作n等分,每个小区间长1/n。
因此当n趋于无穷时,lnXn等于f(x)=lnx在[0,1]上的定积分。
lnx在[0,1]上的定积分为-1
所以 lnXn在n趋于无穷时的极限为-1。
由于 Xn=e^(lnXn),
于是 Xn在n趋于无穷时的极限值为1/e.

2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询