
设a>0,b>0,且a+b=1求证(a+1/a)^2+(b+1/b)^2>=25/2
2个回答
展开全部
(a+ 1/a)^2+(b+ 1/b)^2
=4+a^2+b^2+1/(a^2)+1/(b^2)
=4+(a^2+b^2)[1+1/(a^2*b^2)]
=4+(1-2ab)[1+(1/ab)^2]
显然,随着ab值的增大,值会减小;
即ab取最大值时,(a+ 1/a)^2+(b+ 1/b)^2有最小值;
2ab<=a^2+b^2=1-2ab,所以,ab<=1/4,此时a=b=1/2;
将a,b带入原式,所以
(a+ 1/a)^2+(b+ 1/b)^2
≥(2+1/2)^2+(2+1/2)^2=25/2
=4+a^2+b^2+1/(a^2)+1/(b^2)
=4+(a^2+b^2)[1+1/(a^2*b^2)]
=4+(1-2ab)[1+(1/ab)^2]
显然,随着ab值的增大,值会减小;
即ab取最大值时,(a+ 1/a)^2+(b+ 1/b)^2有最小值;
2ab<=a^2+b^2=1-2ab,所以,ab<=1/4,此时a=b=1/2;
将a,b带入原式,所以
(a+ 1/a)^2+(b+ 1/b)^2
≥(2+1/2)^2+(2+1/2)^2=25/2
展开全部
先求(a+1/a)(b+1/b)
左式=ab+a/b+1/ab+b/a
=(a2b2+a2+1+b2)/ab
=[a2b2+(1-2ab)+1]/ab
=[(ab-1)2+1]/ab
a+b=1
ab<=[(a+b)/2]²=1/4
所以(ab-1)^2+1≥25/16,0<ab≤1/4,1/ab≥4
相乘得到,左式≥25/4
因为原式=(a+1/a)^2+(b+1/b)^2≥2(a+1/a)(b+1/b)≥25/2
左式=ab+a/b+1/ab+b/a
=(a2b2+a2+1+b2)/ab
=[a2b2+(1-2ab)+1]/ab
=[(ab-1)2+1]/ab
a+b=1
ab<=[(a+b)/2]²=1/4
所以(ab-1)^2+1≥25/16,0<ab≤1/4,1/ab≥4
相乘得到,左式≥25/4
因为原式=(a+1/a)^2+(b+1/b)^2≥2(a+1/a)(b+1/b)≥25/2
参考资料: http://zhidao.baidu.com/question/63608970.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询