高中不等式解法
我现在上高二了,开始学不等式,感觉自己上课还挺认真的,老师讲的都听得懂。但是回家之后作业除了和老师讲的一样的类型的会做之外,其他要变通的都是不会,哪位大哥哥教教我怎么才能...
我现在上高二了,开始学不等式,感觉自己上课还挺认真的,老师讲的都听得懂。但是回家之后作业除了和老师讲的一样的类型的会做之外,其他要变通的都是不会,哪位大哥哥教教我怎么才能学好啊?
主要是要知道解题思路是啥?看到题之后像哪个方向想?哪个高手教教,谢谢了 展开
主要是要知道解题思路是啥?看到题之后像哪个方向想?哪个高手教教,谢谢了 展开
展开全部
不等式,肯定要掌握基本的不等式噻!
不等式的题也是千变万化的,很灵活,不多看点题肯定是不行的。
象柯西不等式,排序不等式都是很重要的不等式。经常考虑一题有没有多种的证明方法,时常这么考虑是有好处的。敢说不懂柯西不等式的人在不等式里根本没入门,不懂排序不等式的人根本不入流。
先给你把两个不等式证明了!
柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用
柯西不等式的一般证法有以下几种:
■①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.
我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
则我们知道恒有 f(x) ≥ 0.
用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.
于是移项得到结论。
■②用向量来证.
m=(a1,a2......an) n=(b1,b2......bn)
mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX.
因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2)
这就证明了不等式.
柯西不等式还有很多种,这里只取两种较常用的证法.
[编辑本段]【柯西不等式的应用】
柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。
■巧拆常数:
例:设a、b、c 为正数且各不相等。
求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)
分析:∵a 、b 、c 均为正数
∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9
而2(a+b+c)=(a+b)+(a+c)+(c+b)
又 9=(1+1+1)(1+1+1)
证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9
又 a、b 、c 各不相等,故等号不能成立
∴原不等式成立。
排序不等式是高中数学竞赛大纲、新课标 要求的基本不等式。
设有两组数 a 1 , a 2 ,…… a n, b 1 , b 2 ,…… b n 满足 a 1 ≤ a 2 ≤……≤ a n, b 1 ≤ b 2 ≤……≤ b n 则有 a 1 b n + a 2 b n-1+……+ a n b 1≤ a 1 b t + a 2 b t +……+ a n b t ≤ a 1 b 1 + a 2 b 2 + a n b n 式中t1,t2,……,tn是1,2,……,n的任意一个排列, 当且仅当 a 1 = a 2 =……= a n 或 b 1 = b 2 =……= b n 时成立。
排序不等式常用于与顺序无关的一组数乘积的关系。可以先令a1>=a2>=a3>=...>=an,确定大小关系.
使用时常构造一组数,使其与原数构成乘积关系,以便求解。适用于分式、乘积式尤其是轮换不等式的证明。
以上排序不等式也可简记为: 反序和≤乱序和≤同序和.
证明时可采用逐步调整法。
例如,证明:其余不变时,将a 1 b 1 + a 2 b 2 调整为a 1 b 2 + a 2 b 1 ,值变小,只需作差证明(a 1 -a 2 )*(b 1 -b 2 )≥0,这由题知成立。
依次类推,根据逐步调整法,排序不等式得证。
时常考虑不等式可否取等也是有必要的!
当0<A≤π/2
求函数f(x)=sinA+4/sinA的值域! ,你是否能做得来?
利用函数单调性是解决不等式的很好办法,当你看到关于n的不等式,要自觉想到函数单调性的应用。
f(n)=1+1/2+1/3+.....1/n
求证f(2^n)大于 (n+2)/2
n是大于等于2的正整数
设g(n)=1+1/2+1/3+…+1/2^n-(n+2)/2
只需证明g(n)恒大于零!
g(2)=1+1/2+1/3+1/4-2>0
g(n+1)-g(n)
=1/(2^n+1)+1/(2^n+2)+…1/2^(n+1)-(n+3)/2
+(n+2)/2
>2^n*1/2^(n+1)-1/2=1/2-1/2=0
g(n)单调递增。
g(n)>g(2)>0
即f(2^n)-(n+2)/2 >0
∴命题得证。
不等式是千变万化的,不是你想像的那么简单,书上那些题只是课堂练习,不要止步不前。
多看,多练,多想是非常必要的,最好还得有点经典的笔记。
如果你学习光按课本来,那么你的学习是危险的,想起以前学武之人还想点什么武功秘籍的吗,你干嘛不学习一下呢?有时间多看点课外读物,想竞赛之类的也去看看。
相信你!也祝你学习进步。
不等式的题也是千变万化的,很灵活,不多看点题肯定是不行的。
象柯西不等式,排序不等式都是很重要的不等式。经常考虑一题有没有多种的证明方法,时常这么考虑是有好处的。敢说不懂柯西不等式的人在不等式里根本没入门,不懂排序不等式的人根本不入流。
先给你把两个不等式证明了!
柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用
柯西不等式的一般证法有以下几种:
■①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.
我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
则我们知道恒有 f(x) ≥ 0.
用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.
于是移项得到结论。
■②用向量来证.
m=(a1,a2......an) n=(b1,b2......bn)
mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX.
因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2)
这就证明了不等式.
柯西不等式还有很多种,这里只取两种较常用的证法.
[编辑本段]【柯西不等式的应用】
柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。
■巧拆常数:
例:设a、b、c 为正数且各不相等。
求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)
分析:∵a 、b 、c 均为正数
∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9
而2(a+b+c)=(a+b)+(a+c)+(c+b)
又 9=(1+1+1)(1+1+1)
证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9
又 a、b 、c 各不相等,故等号不能成立
∴原不等式成立。
排序不等式是高中数学竞赛大纲、新课标 要求的基本不等式。
设有两组数 a 1 , a 2 ,…… a n, b 1 , b 2 ,…… b n 满足 a 1 ≤ a 2 ≤……≤ a n, b 1 ≤ b 2 ≤……≤ b n 则有 a 1 b n + a 2 b n-1+……+ a n b 1≤ a 1 b t + a 2 b t +……+ a n b t ≤ a 1 b 1 + a 2 b 2 + a n b n 式中t1,t2,……,tn是1,2,……,n的任意一个排列, 当且仅当 a 1 = a 2 =……= a n 或 b 1 = b 2 =……= b n 时成立。
排序不等式常用于与顺序无关的一组数乘积的关系。可以先令a1>=a2>=a3>=...>=an,确定大小关系.
使用时常构造一组数,使其与原数构成乘积关系,以便求解。适用于分式、乘积式尤其是轮换不等式的证明。
以上排序不等式也可简记为: 反序和≤乱序和≤同序和.
证明时可采用逐步调整法。
例如,证明:其余不变时,将a 1 b 1 + a 2 b 2 调整为a 1 b 2 + a 2 b 1 ,值变小,只需作差证明(a 1 -a 2 )*(b 1 -b 2 )≥0,这由题知成立。
依次类推,根据逐步调整法,排序不等式得证。
时常考虑不等式可否取等也是有必要的!
当0<A≤π/2
求函数f(x)=sinA+4/sinA的值域! ,你是否能做得来?
利用函数单调性是解决不等式的很好办法,当你看到关于n的不等式,要自觉想到函数单调性的应用。
f(n)=1+1/2+1/3+.....1/n
求证f(2^n)大于 (n+2)/2
n是大于等于2的正整数
设g(n)=1+1/2+1/3+…+1/2^n-(n+2)/2
只需证明g(n)恒大于零!
g(2)=1+1/2+1/3+1/4-2>0
g(n+1)-g(n)
=1/(2^n+1)+1/(2^n+2)+…1/2^(n+1)-(n+3)/2
+(n+2)/2
>2^n*1/2^(n+1)-1/2=1/2-1/2=0
g(n)单调递增。
g(n)>g(2)>0
即f(2^n)-(n+2)/2 >0
∴命题得证。
不等式是千变万化的,不是你想像的那么简单,书上那些题只是课堂练习,不要止步不前。
多看,多练,多想是非常必要的,最好还得有点经典的笔记。
如果你学习光按课本来,那么你的学习是危险的,想起以前学武之人还想点什么武功秘籍的吗,你干嘛不学习一下呢?有时间多看点课外读物,想竞赛之类的也去看看。
相信你!也祝你学习进步。
展开全部
不等式主要问题包括:大小比较(方法有作差法,
作商法
,
图象法
,函数性质法)。证明题(比较法,反证法,
换元法
,综合法…)恒成立问题(判别式法,分离参数法…)具体的老师都会教
作商法
,
图象法
,函数性质法)。证明题(比较法,反证法,
换元法
,综合法…)恒成立问题(判别式法,分离参数法…)具体的老师都会教
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不等式是高中数学中看似简单但实际很变态的一种题目,没有捷径,只有多做,有时还需要运气……你不会的时候不要急着看答案,自己先想想,这样持续一个星期应该就会有起色。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没有必要去钻研解题思路,多做练习(最好中等难度的),自然而然你就会自己得出一套思路来,我当年就是这样学的,效果还不错!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不等式体型很活,要想出得难的话可以很难很难,需要非常好的数学思维能力,不过高考也不会太为难人,所以一半不会很难,只要掌握基本题型和重要不等式公式,多做题,只要跟着老师走,高考就不会太有问题,如果你的数学很强的话,在掌握自出前提下,建议你多做做难题,不等式还是很训练数学思维的,是很有意思的。
个人见解,仅供参考,希望你能学好。
个人见解,仅供参考,希望你能学好。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询