已知△ABC为等边三角形,D,F分别为BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE
已知△ABC为等边三角形,D,F分别为BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE,点D在线段BC上何处时,四边形CDLEF是平行四边形,且∠DEF=30...
已知△ABC为等边三角形,D,F分别为BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE,点D在线段BC上何处时,四边形CDLEF是平行四边形,且∠DEF=30°并证明你的结论
展开
1个回答
2014-04-16 · 知道合伙人软件行家
关注
展开全部
证明:(1)由△ABC为等边三角形,AC=BC,∠FBC=∠DCA,
在△ACD和△CBF中,
AC=BC
∠DCA=∠FBC
CD=BF
,
所以△ACD≌△CBF(SAS);
(2)当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度
按上述条件作图,
连接BE,
在△AEB和△ADC中,
AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,
∴△AEB≌△ADC(SAS),
又∵△ACD≌△CBF,
∴△AEB≌△ADC≌△CFB,
∴EB=FB,∠EBA=∠ABC=60°,
∴△EFB为正三角形,
∴EF=FB=CD,∠EFB=60°,
又∵∠ABC=60°,
∴∠EFB=∠ABC=60°,
∴EF∥BC,
而CD在BC上,∴EF平行且相等于CD,
∴四边形CDEF为平行四边形,
∵D在线段BC上的中点,
∴F在线段AB上的中点,
∴∠FCD=
1
2
×60°=30°
则∠DEF=∠FCD=30°.
在△ACD和△CBF中,
AC=BC
∠DCA=∠FBC
CD=BF
,
所以△ACD≌△CBF(SAS);
(2)当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度
按上述条件作图,
连接BE,
在△AEB和△ADC中,
AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,
∴△AEB≌△ADC(SAS),
又∵△ACD≌△CBF,
∴△AEB≌△ADC≌△CFB,
∴EB=FB,∠EBA=∠ABC=60°,
∴△EFB为正三角形,
∴EF=FB=CD,∠EFB=60°,
又∵∠ABC=60°,
∴∠EFB=∠ABC=60°,
∴EF∥BC,
而CD在BC上,∴EF平行且相等于CD,
∴四边形CDEF为平行四边形,
∵D在线段BC上的中点,
∴F在线段AB上的中点,
∴∠FCD=
1
2
×60°=30°
则∠DEF=∠FCD=30°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询