2、假设一种无红利支付的股票目前的市价为20元,无风险连续复利年利率为10%,求该股票3个月的远期
2、假设一种无红利支付的股票目前的市价为20元,无风险连续复利年利率为10%,求该股票3个月的远期价格。...
2、假设一种无红利支付的股票目前的市价为20元,无风险连续复利年利率为10%,求该股票3个月的远期价格。
展开
5个回答
展开全部
三个月后,对于多头来说,该远期合约的价值为
F=se^(r(T-t))=20.51
拓展资料:
远期的价格,远期的价值,远期的交割价格三者之间关系:
1.远期的交割价格,又可以写成contract price/delivery price/settlement price。指的是合同双方在初期(t=0)时刻签订合约时,约定的到期日进行交付的价格,针对于标的资产。这个价格自确定以后,就不会改变。
2.远期价格forward price。要注意的是这个价格不是限定于现在已经签署了远期合约的资产,事实上基本所有的资产都可以有一个远期价格。但是有些资产的远期价格不好求,我们一般说的forward price都是针对于tradeable assets。为了求这些远期价格,我们是把标的资产带入到签订了一个远期合约的场景(仅仅是场景,便于理解计算)中来的。对于这个有几种定义,都是等价的。1)forward price is the delivery price which makes forward contract zero valued。这个定义涉及到了题中的三种价值/价格。首先,forward price可以把它看作是一个特殊的交割价格,这个交割价格会使得这份合约的价值为0。合约价值为0 ,其实就是在说,这个合约给我带来的收益和我的付出在现值上是一致的,类似于一个zero-sum game。2)forward price是一个fair price。那就是说假设我做为short part,我在这个远期合约上的净收入,应该和我使用同样数额的投入带来的无风险净收益是一样的。那就是说 fair price(K) + FV of asset’s dividend(F) - FV of spot price(S) = cost of capital(C)。等式左边就是在描述,在T时候执行合约,我收获了fair price--K,并且在0~T时刻内,标的资产的dividend也给我带来了收益F(注意这里用的future value,是因为我现在讨论的时刻是在T时刻)。那么K+F就是在T时刻我的收益了。但是为了得到这个收益,我付出了多少呢?就是在0时刻,我购买这个标的资产的价格,那就是S。从而,我的净收益就是K+F-S*exp(r*T)那我现在用我的等量投入--S,获得的无风险净收益就是S*exp(r*T)-S=C。作为一个fair price,这两者应该相等。于是通过K+F-S=C就可以得到这个forward price也可以参考Wiki上的介绍,写得也很清楚。
3.远期的价值。这个和前面不一样,前两个都是针对于标的资产,这一个是针对于合约本身。一开始0时刻,我签订这个合约f(0,T),contract price是F(0,T),这个其实也是按照现在的spot price求得的forward price。此时f(0,T)=0但到了后来任意一个时刻0
F=se^(r(T-t))=20.51
拓展资料:
远期的价格,远期的价值,远期的交割价格三者之间关系:
1.远期的交割价格,又可以写成contract price/delivery price/settlement price。指的是合同双方在初期(t=0)时刻签订合约时,约定的到期日进行交付的价格,针对于标的资产。这个价格自确定以后,就不会改变。
2.远期价格forward price。要注意的是这个价格不是限定于现在已经签署了远期合约的资产,事实上基本所有的资产都可以有一个远期价格。但是有些资产的远期价格不好求,我们一般说的forward price都是针对于tradeable assets。为了求这些远期价格,我们是把标的资产带入到签订了一个远期合约的场景(仅仅是场景,便于理解计算)中来的。对于这个有几种定义,都是等价的。1)forward price is the delivery price which makes forward contract zero valued。这个定义涉及到了题中的三种价值/价格。首先,forward price可以把它看作是一个特殊的交割价格,这个交割价格会使得这份合约的价值为0。合约价值为0 ,其实就是在说,这个合约给我带来的收益和我的付出在现值上是一致的,类似于一个zero-sum game。2)forward price是一个fair price。那就是说假设我做为short part,我在这个远期合约上的净收入,应该和我使用同样数额的投入带来的无风险净收益是一样的。那就是说 fair price(K) + FV of asset’s dividend(F) - FV of spot price(S) = cost of capital(C)。等式左边就是在描述,在T时候执行合约,我收获了fair price--K,并且在0~T时刻内,标的资产的dividend也给我带来了收益F(注意这里用的future value,是因为我现在讨论的时刻是在T时刻)。那么K+F就是在T时刻我的收益了。但是为了得到这个收益,我付出了多少呢?就是在0时刻,我购买这个标的资产的价格,那就是S。从而,我的净收益就是K+F-S*exp(r*T)那我现在用我的等量投入--S,获得的无风险净收益就是S*exp(r*T)-S=C。作为一个fair price,这两者应该相等。于是通过K+F-S=C就可以得到这个forward price也可以参考Wiki上的介绍,写得也很清楚。
3.远期的价值。这个和前面不一样,前两个都是针对于标的资产,这一个是针对于合约本身。一开始0时刻,我签订这个合约f(0,T),contract price是F(0,T),这个其实也是按照现在的spot price求得的forward price。此时f(0,T)=0但到了后来任意一个时刻0
展开全部
3个月也叫远期?按照你的意思年利10%,0.1/12,那一个月平均千分之八,3个月的复利就是20×(1+0.008)^3,大约是20.48
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
远期价格=20*e^(10%*3/12)=20.5063元。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用wdxz2011的回答:
3个月也叫远期?按照你的意思年利10%,0.1/12,那一个月平均千分之八,3个月的复利就是20×(1+0.008)^3,大约是20.48
3个月也叫远期?按照你的意思年利10%,0.1/12,那一个月平均千分之八,3个月的复利就是20×(1+0.008)^3,大约是20.48
展开全部
三个月后,对于多头来说,该远期合约的价值为
F=se^(r(T-t))=20.51
F=se^(r(T-t))=20.51
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
20*e^(0.1*0.25)=20.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载