十字相乘法是什么?怎么算?
4个回答
2013-11-01
展开全部
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字相乘法能把某些二次三项式分解因式。对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
亲,如果我的回答对您有帮助,请赐个好评吧。谢谢!
十字相乘法能把某些二次三项式分解因式。对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
亲,如果我的回答对您有帮助,请赐个好评吧。谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法.
十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式
的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)
然后按斜线交叉相乘、再相加,若有
,则有
,否则,需交换
的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止.
在我们做因式分解题时,可以参照下面的口诀:
首先提取公因式,然后考虑用公式;
十字相乘试一试,分组分得要合适;
四种方法反复试,最后须是连乘式.
十字相乘法解题实例:
1)、
用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
因为
1
-2
1
╳
6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题
因为
1
2
5
╳
-4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.
因为
1
-3
1
╳
-5
所以原方程可变形(x-3)(x-5)=0
所以x1=3
x2=5
例4、解方程
6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.
因为
2
-5
3
╳
5
所以
原方程可变形成(2x-5)(3x+5)=0
所以
x1=5/2
x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y²可分为y.18y
,2y.9y
,3y.6y
因为
2
-9y
7
╳
-2y
所以
14x²-67xy+18y²=
(2x-9y)(7x-2y)
十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式
的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)
然后按斜线交叉相乘、再相加,若有
,则有
,否则,需交换
的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止.
在我们做因式分解题时,可以参照下面的口诀:
首先提取公因式,然后考虑用公式;
十字相乘试一试,分组分得要合适;
四种方法反复试,最后须是连乘式.
十字相乘法解题实例:
1)、
用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
因为
1
-2
1
╳
6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题
因为
1
2
5
╳
-4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.
因为
1
-3
1
╳
-5
所以原方程可变形(x-3)(x-5)=0
所以x1=3
x2=5
例4、解方程
6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.
因为
2
-5
3
╳
5
所以
原方程可变形成(2x-5)(3x+5)=0
所以
x1=5/2
x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y²可分为y.18y
,2y.9y
,3y.6y
因为
2
-9y
7
╳
-2y
所以
14x²-67xy+18y²=
(2x-9y)(7x-2y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询