各位大神求解啊!!
已知0<α<90,若corα-sinα=-√5/5,求(2sinαcosα-cosα+1)/(1-tanα)...
已知0<α<90,若corα-sinα=-√5/5,求(2sinαcosα-cosα+1)/(1-tanα)
展开
1个回答
展开全部
解:因为0<α<90,所以Sinα>0,Cosα>0
(Cosα-Sinα)^2=(Cosα)^2+(Sinα)^2-2SinαCosα =1-2SinαCosα=1/5 ,所以2SinαCosα=4/5
(Cosα+Sinα)^2=(Cosα)^2+(Sinα)^2+2SinαCosα =1+2SinαCosα=9/5
因为Sinα>0,Cosα>0,所以 Cosα+Sinα>0
所以Cosα+Sinα=3√5/5
由Cosα+Sinα=3√5/5 和 Cosα-Sinα= -√5/5
得Cosα=√5/5 , Sinα=2√5/5
(2sinαcosα-cosα+1)/(1-tanα)
=(4/5-√5/5+ 1)/(1-Sinα/Cosα)
=(9/5-√5/5)/(1-2)
=√5/5-9/5
=(√5-9)/5
(Cosα-Sinα)^2=(Cosα)^2+(Sinα)^2-2SinαCosα =1-2SinαCosα=1/5 ,所以2SinαCosα=4/5
(Cosα+Sinα)^2=(Cosα)^2+(Sinα)^2+2SinαCosα =1+2SinαCosα=9/5
因为Sinα>0,Cosα>0,所以 Cosα+Sinα>0
所以Cosα+Sinα=3√5/5
由Cosα+Sinα=3√5/5 和 Cosα-Sinα= -√5/5
得Cosα=√5/5 , Sinα=2√5/5
(2sinαcosα-cosα+1)/(1-tanα)
=(4/5-√5/5+ 1)/(1-Sinα/Cosα)
=(9/5-√5/5)/(1-2)
=√5/5-9/5
=(√5-9)/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询