已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1. (1)设bn=an+
已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.(1)设bn=an+1-2an,求证{bn}是等比数列(2)设Cn=an2n,求证{Cn}是等...
已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.
(1)设bn=an+1-2an,求证{bn}是等比数列
(2)设Cn=
an
2n
,求证{Cn}是等差数列
(3)求数列{an}的通项公式及前n项和公式 展开
(1)设bn=an+1-2an,求证{bn}是等比数列
(2)设Cn=
an
2n
,求证{Cn}是等差数列
(3)求数列{an}的通项公式及前n项和公式 展开
展开全部
(1) 证明:∵Sn+1=4an+2
∴Sn+1-Sn=4an+2-4an-1-2
an +1=4an-4an-1
an+1=4(an-an-1)
an+1-2an=2(an-2an-1)
bn=2an-1
即 bn/ bn-1=2
∵a1=1
∴S2=4a1+2
a1+a2= 4a1+2
a2=3a1+2=3+2=5
∴b1= a2-2a1=5-2=3
∴{ bn}是以首项为3,公比为2的等比数列
(2)∵Cn= an/2^n
∴Cn-Cn-1= an/2^n- a n-1/2^n-1= an/2^n- 2a n-1/2^n= an- 2an-1/2^n= bn-1/2^n
=3*2^n-2/2^n =3/4
C1= a1/2=1/2
∴{ Cn}是以首项为1/2,公差为的3/4等差数列
(3)由(2)知{ Cn}是以首项为1/2,公差为的3/4等差数列
Cn=1/2+(n-1)3/4= an/2^n
∴an=2^n-1 +(n-1) 3*2^n/4
∴Sn=4an-1+2=4[2^n-2+ (n-1) 3*2^n/4]
=2+3(n-1)2^n
~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问的朋友在客户端右上角评价点【满意】即可。~你的采纳是我前进的动力~~O(∩_∩)O
∴Sn+1-Sn=4an+2-4an-1-2
an +1=4an-4an-1
an+1=4(an-an-1)
an+1-2an=2(an-2an-1)
bn=2an-1
即 bn/ bn-1=2
∵a1=1
∴S2=4a1+2
a1+a2= 4a1+2
a2=3a1+2=3+2=5
∴b1= a2-2a1=5-2=3
∴{ bn}是以首项为3,公比为2的等比数列
(2)∵Cn= an/2^n
∴Cn-Cn-1= an/2^n- a n-1/2^n-1= an/2^n- 2a n-1/2^n= an- 2an-1/2^n= bn-1/2^n
=3*2^n-2/2^n =3/4
C1= a1/2=1/2
∴{ Cn}是以首项为1/2,公差为的3/4等差数列
(3)由(2)知{ Cn}是以首项为1/2,公差为的3/4等差数列
Cn=1/2+(n-1)3/4= an/2^n
∴an=2^n-1 +(n-1) 3*2^n/4
∴Sn=4an-1+2=4[2^n-2+ (n-1) 3*2^n/4]
=2+3(n-1)2^n
~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问的朋友在客户端右上角评价点【满意】即可。~你的采纳是我前进的动力~~O(∩_∩)O
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询