什么叫一元一次不等式
3个回答
展开全部
数学名词,用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式。
概念定义
一般地,用符号“=”连接的式子叫做等式。
注意:等式的左右两边是代数式。
一般地,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。(不等式中可以含有未知数,也可以不含。)
用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式(linear ineqality with one unknown)。
不等式性质
(1)不等式的两边都加上(或减去)同一个数(或式子)(0除外),不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
数字语言简洁表达不等式的性质——
【1.性质1:如果a>b,那么a±c>b±c)】
【2.性质2:如果a>b,c>0,那么ac>bc(或a/c>b/c)】
【3.性质3:如果a>b,c<0,那么ac<bc(或a/c<b/c)】
一般顺序
(1)去分母 (运用不等式性质2、3)
(2)去括号
(3)移项 (运用不等式性质1)
(4)合并同类项。
(5)将未知数的系数化为1 (运用不等式性质2、3)
【(6)有些时候需要在数轴上表示不等式的解集】
不等式解集
一个有未知数的不等式的所有解,组成这个不等式的解集。例如﹕不等式x-5≤-1的解集为x≤4;不等式x﹥0的解集是所有正实数。求不等式解集的过程叫做解不等式。
将一元一次不等式化为ax>b的形式
(1)若a>0,则解集为x>b/a。
(2)若a<0,则解集为x<b/a。
表示
(1) 用不等式表示:一般地,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3。
(2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
不等式组
(1) 一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。
(2)一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。
1. 代数式大小的比较:
(1) 利用数轴法;
(2) 直接比较法;
(3) 差值比较法;
(4) 商值比较法;
(5) 利用特殊比较法。(在涉及代数式的比较时,还要适当的使用分类讨论法)
2综合运用编辑
一般先求出函数表达式,再化简不等式求解。
解题步骤
(1) 求出每个不等式的解集;
(2) 求出每个不等式的解集的公共部分;(一般利用数轴)
(3) 用代数符号语言来表示公共部分。(也可以说成是下结论)
常见解法
如果a<b,
(1) 关于x不等式组{x>a} {x>b}的解集是:x>b
(2) 关于x不等式组{x<a} {x<b}的解集是:x<a
(3) 关于x不等式组{x>a} {x<b}的解集是:a<x<b
(4) 关于x不等式组{x<a} {x>b}的解集是空集。
以上取解集的方法可归纳为:两大取大,两小取小,大小小大取中间,大大小小取空集
特殊不等式组解
(1) 关于x不等式(组):{x≥a} { x≤a}的解集为:x=a
(2) 关于x不等式(组):{x<a}{x>a} 的解集是空集。
与一元一次方程
不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系,相同点:二者都是只含有一个未知数,未知数的次数都是1,左右两边都是整式
概念定义
一般地,用符号“=”连接的式子叫做等式。
注意:等式的左右两边是代数式。
一般地,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。(不等式中可以含有未知数,也可以不含。)
用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式(linear ineqality with one unknown)。
不等式性质
(1)不等式的两边都加上(或减去)同一个数(或式子)(0除外),不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
数字语言简洁表达不等式的性质——
【1.性质1:如果a>b,那么a±c>b±c)】
【2.性质2:如果a>b,c>0,那么ac>bc(或a/c>b/c)】
【3.性质3:如果a>b,c<0,那么ac<bc(或a/c<b/c)】
一般顺序
(1)去分母 (运用不等式性质2、3)
(2)去括号
(3)移项 (运用不等式性质1)
(4)合并同类项。
(5)将未知数的系数化为1 (运用不等式性质2、3)
【(6)有些时候需要在数轴上表示不等式的解集】
不等式解集
一个有未知数的不等式的所有解,组成这个不等式的解集。例如﹕不等式x-5≤-1的解集为x≤4;不等式x﹥0的解集是所有正实数。求不等式解集的过程叫做解不等式。
将一元一次不等式化为ax>b的形式
(1)若a>0,则解集为x>b/a。
(2)若a<0,则解集为x<b/a。
表示
(1) 用不等式表示:一般地,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3。
(2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
不等式组
(1) 一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。
(2)一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。
1. 代数式大小的比较:
(1) 利用数轴法;
(2) 直接比较法;
(3) 差值比较法;
(4) 商值比较法;
(5) 利用特殊比较法。(在涉及代数式的比较时,还要适当的使用分类讨论法)
2综合运用编辑
一般先求出函数表达式,再化简不等式求解。
解题步骤
(1) 求出每个不等式的解集;
(2) 求出每个不等式的解集的公共部分;(一般利用数轴)
(3) 用代数符号语言来表示公共部分。(也可以说成是下结论)
常见解法
如果a<b,
(1) 关于x不等式组{x>a} {x>b}的解集是:x>b
(2) 关于x不等式组{x<a} {x<b}的解集是:x<a
(3) 关于x不等式组{x>a} {x<b}的解集是:a<x<b
(4) 关于x不等式组{x<a} {x>b}的解集是空集。
以上取解集的方法可归纳为:两大取大,两小取小,大小小大取中间,大大小小取空集
特殊不等式组解
(1) 关于x不等式(组):{x≥a} { x≤a}的解集为:x=a
(2) 关于x不等式(组):{x<a}{x>a} 的解集是空集。
与一元一次方程
不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系,相同点:二者都是只含有一个未知数,未知数的次数都是1,左右两边都是整式
展开全部
由不等号(<,>等)连接的不等关系式叫做不等式,其中只能含有一个未知数,且含未知数的项的最高次数是一次,这样的不等式叫做一元一次不等式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用不等号连接,含有个一个未知数,并且含有未知数项的次数都是1的,系数不为0的,左右两边为整式的式子叫做一元一次不等式。
一般地,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。
不等式性质
(1)不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
一元一次不等式
http://baike.baidu.com/link?url=qLeykxqN9Xw846mip8wM-v-VcEm3eyiAXNIL4Y7OGuox3Sg9yb2CGAKc9hgIfv5obQbX1bMGjbC0CFFmnUyIXq
一般地,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。
不等式性质
(1)不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
一元一次不等式
http://baike.baidu.com/link?url=qLeykxqN9Xw846mip8wM-v-VcEm3eyiAXNIL4Y7OGuox3Sg9yb2CGAKc9hgIfv5obQbX1bMGjbC0CFFmnUyIXq
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询