向量数量积公式是什么

 我来答
小柒学姐吖
科技发烧友

2021-08-27 · 智能家居/数码/手机/智能家电产品都懂点
知道小有建树答主
回答量:388
采纳率:100%
帮助的人:8.8万
展开全部

向量的数量积公式:a*b=|a||b|cosθ  a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。

一个向量和另个向量在这个向量上的投影的乘积,前提始位置要相同。        
       
       

已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b。

两个向量的数量积等于它们对应坐标的乘积的和。

即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

向量的数量积公式:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。  一个向量和另个向量在这个向量上的投影的乘积,前提始位置要相同。


拓展资料


       
       


平面向量数量积

已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。

即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2


性质

设 a、b为非零向量,则

①设 e是单位向量,且 e与 a的夹角为θ,则 e·a= a·e=| a|| e|cosθ

② a⊥b= a·b=0

③当 a与 b同向时, a·b=| a|| b|;当 a与 b反向时, a·a=| a|= a或| a|=√ a·a

④|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立

⑤cosθ=a·b╱|a||b|(θ为向量a.b的夹角)

⑥零向量与任意向量的数量积为0。


运算

⑴交换律: a·b= b·a

⑵数乘结合律:( λa)· b= λ( a·b)= a·( λb)

⑶分配律:( a+b)· c= a·c+ b·c


几何意义

①一个向量在另一个向量方向上的投影

设θ是a、b的夹角,则|b|cosθ叫做向量b在向量a的方向上的投影,|a|cosθ叫做向量a在向量b方向上的投 影。

② a·b的几何意义

数量积 a·b等于 a的长度| a|与 b在 a的方向上的投影| b|cosθ的乘积

★注意:投影和两向量的数量积都是数量,不是向量。

③数量积 a·b的几何意义是: a的长度| a|与 b在 a的方向上的投影| b|cos θ的乘积。


求向量的模的方法

  • 公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

  • (2)几何法,利用向量的几何意义.  


           

    请点击输入图片描述

    求向量模的最值(范围)的方法:

  • 代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;

  • (2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.

上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
谷子
2018-07-05 · 知道合伙人互联网行家
谷子
知道合伙人互联网行家
采纳数:11086 获赞数:106424
大型国有控股公司,网络建设,设备管理,信息化运维。机房管理,

向TA提问 私信TA
展开全部

已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

向量的数量积公式:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。

一个向量和另个向量在这个向量上的投影的乘积,前提始位置要相同。

[扩展资料]

数量积的性质 

设a、b为非零向量,则

①设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a|cosθ

②a⊥b=a·b=0

③当a与b同向时,a·b=|a||b|;当a与b反向时,a·a=|a|2=a2或|a|=√a·a

④|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立

⑤cosθ=a·b╱|a||b|(θ为向量a.b的夹角)

⑥零向量与任意向量的数量积为0。

向量数量积的运算律 

⑴交换律:a·b=b·a

⑵数乘结合律:(λa)·b=λ(a·b)=a·(λb)

⑶分配律:(a+b)·c=a·c+b·c

平面向量数量积的几何意义 

①一个向量在另一个向量方向上的投影

设θ是a、b的夹角,则|b|cosθ叫做向量b在向量a的方向上的投影,|a|cosθ叫做向量a在向量b方向上的投 影。

②a·b的几何意义

数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积

★注意:投影和两向量的数量积都是数量,不是向量。

③数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
树木爱水闰
2018-07-05 · TA获得超过3.7万个赞
知道小有建树答主
回答量:40
采纳率:90%
帮助的人:1万
展开全部

一、向量的数量积格式:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。

二、拓展资料:关于向量积

1、向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。

2、两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。

3、向量积可以被定义为:

4、模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。)

5、方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)

(参考资料:百度百科:向量积

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
记忆e偶尔雨
高粉答主

2018-07-05 · 醉心答题,欢迎关注
知道大有可为答主
回答量:600
采纳率:89%
帮助的人:42.3万
展开全部

向量数量积公式:

(1)定义:a*b=|a|*|b|*cosθ ,其中 θ 是向量 a、b 的夹角.

(2)公式:如果向量 a、b 的坐标分别是(a1,a2,.,an)、(b1,b2,.,bn),那么 a*b=a1b1+a2b2+.+anbn .

拓展资料

向量数量积的基本性质

设ab都是非零向量θ是a与b的夹角则

① cosθ=a·b/|a||b|

②当a与b同向时a·b=|a||b|当a与b反向时a·b=-|a||b|

③ |a·b|≤|a||b|

④a⊥b=a·b=0适用在平面内的两直线

向量数量积运算规律

1.交换律α·β=β·α

2.分配律(α+β)·γ=α·γ+β·γ

3.若λ为数(λα)·β=λ(α·β)=α·(λβ)

若λμ为数(λα)·(μβ)=λμ(α·β)

4.α·α=|α|^2 此外α·α=0=α=0

向量的数量积不满足消去律即一般情况下α·β=α·γα≠0 ≠β=γ

向量的数量积不满足结合律即一般α·β)·γ ≠α·β·γ

相互垂直的两向量数量积为0

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
杨高岭之花
2018-07-08 · TA获得超过5032个赞
知道答主
回答量:80
采纳率:100%
帮助的人:1.2万
展开全部

公式:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。

资料扩展:

1.数量积的性质

设a、b为非零向量,则

①设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a|cosθ

②a⊥b=a·b=0

③当a与b同向时,a·b=|a||b|;当a与b反向时,a·a=|a|2=a2或|a|=√a·a

④|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立。

⑤cosθ=a·b╱|a||b|(θ为向量a.b的夹角)。

⑥零向量与任意向量的数量积为0。

2.向量数量积的运算律

编辑

⑴交换律:a·b=b·a

⑵数乘结合律:(λa)·b=λ(a·b)=a·(λb)

⑶分配律:(a+b)·c=a·c+b·c



本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(10)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式