拐点和极值点的区别
1、拐点和极值点通常是不一样的,两者的定义是不同的。
极值点处一阶导数为0,一阶导数描述的是原函数的增减性;拐点处二阶导数为0,二阶导数描述的是原函数的凹凸性。
2、判读方法不同。
如果该函数在该点及其领域有一阶二阶三阶导数存在,那么函数的一阶导数为0,且二阶导数不为0的点为极值点;函数的二阶导数为0,且三阶导数不为0的点为拐点。如,y=x^4, x=0是极值点但不是拐点。如果该点不存在导数,需要实际判断,如y=|x|, x=0时导数不存在,但x=0是该函数的极小值点。
拓展资料:
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
在生活中借指事物的发展趋势开始改变的地方(例如:经济运行出现回升拐点)。
参考资料:百度百科-拐点
2025-01-06 广告
1、拐点和极值点通常是不一样的,两者的定义是不同的。
拐点处二阶导数为0,二阶导数描述的是原函数的凹凸性。
2、判读方法不同。
如果该函数在该点及其领域有一阶二阶三阶导数存在,那么函数的一阶导数为0,且二阶导数不为0的点为极值点;函数的二阶导数为0,且三阶导数不为0的点为拐点。如,y=x^4, x=0是极值点但不是拐点。如果该点不存在导数,需要实际判断,如y=|x|, x=0时导数不存在,但x=0是该函数的极小值点。
扩展资料:
若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
极值点与稳定点
注:定义不要求函数 可导,所以可导函数 的极值点必须是稳定点,但稳定点不一定是极值点。
在数学分析中,函数的最大值和最小值(最大值和最小值)被统称为极值(极数),是给定范围内的函数的最大值和最小值(本地 或相对极值)或函数的整个定义域(全局或绝对极值)。皮埃尔·费马特(Pierre de Fermat)是第一位发现函数的最大值和最小值数学家之一。
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
设函数y=f(x)在点 的某邻域内连续,若( ,f( ))是曲线y=f(x)凹与凸的分界点,则称( ,f( ))为曲线y=f(x)的拐点。
高等数学里面涉及到一些函数图像的性质,但是说这些图像性质就有一些就特别容易混乱,比如拐点极值点注点这个非常容易混乱,但是是有一些判别的方法,可以让你告别混乱的。
函数二阶导等于0的点称为拐点,也是函数凹凸性发生改变的点,然后你可以选择带入一个二阶导的值,就是在这个拐点区间的值判断出二阶导是大于0还是小于0,大于0它就是向下凹的,小于0就是向上凸的,但是等于0的点,并不代表着它一定是极值点。
函数的图像拐点是二阶导等于0的点极值点也是一阶导等于02阶导有的话也是等于0的这个点,但是两者并不是互通的,就是说有可能一个点它是拐点,但是它不是极值点,比如说它有可能会发生下面是凸的,上面是凹的,但是它的凹凸性发生了改变这个点的上升性没有改变,只是上升的速率发生了改变,这个就被称为拐点,但是它不是极值点。
函数的一阶导等于0,这一点是极值点,然后在端点也有可能是极值点,是在有限区间之内,极值点和拐点不是一个点可以推断出的是拐点,不一定是极值点,但是极值点有可能是拐点,两者并不存在必要的联系。
去判断一个函数的图像,它的拐点极值点上升性,凹凸性等等最简单有效的方法是求出它的一阶导求出它的二阶导,然后去画出它的图像,图像画出来之后它到底是拐点还是极值点,就能够很简单的判断出来哈,如果非要用一些文字性的东西去判断的话会很困难,而且说拐点和极值点之间没有必要性,是说两者不见得会相互影响,但是两者也有可能相互影响,所以文字的东西说不清。
定义不同:
极值点:函数的单调性发生变化的点,或是函数的局部极大值点或极小值点。(若函数存在导数时,函数的极值点是一阶导数变号的零点,即函数的导数为0,且二阶导数不为0。)
拐点:函数的凹凸性发生变化的点,或者是函数的二阶导数为0,且三阶导数不为0的点(或者说二阶导数在该点两侧异号。)
2.判读方法不同:
如果该函数在该点及其领域有一阶二阶三阶导数存在,那么函数的一阶导数为0,且二阶导数不为0的点为极值点;函数的二阶导数为0,且三阶导数不为0的点为拐点。如,y=x^4, x=0是极值点但不是拐点。
如果该点不存在导数,需要实际判断,如y=|x|, x=0时导数不存在,但x=0是该函数的极小值点。
拓展说明:
除了极值点和拐点,还有驻点。
驻点:在微积分,驻点(Stationary Point)又称为平稳点、稳定点或临界点(Critical Point)是函数的一阶导数为零,即在“这一点”,函数的输出值停止增加或减少。一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点。