标准差表示什么?
标准差(Standard Deviation) ,是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。
标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
扩展资料:
方差统计学意义:
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
参考资料来源:百度百科-方差
参考资料来源:百度百科-标准差
2021-04-22 · 百度认证:高顿教育官方账号
推荐于2017-12-16
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同 。
标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差,标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
从几何学的角度出发,标准差可以理解为一个从 n 维空间的一个点到一条直线的距离的函数。
在真实世界中,除非在某些特殊情况下,不然找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。