1个回答
展开全部
解:(1)①x=0和x=2时y的值相等,
∴抛物线的对称轴为x=1,
又∵抛物线的顶点M在直线y=3x-7上,
∴M(1,-4),
设抛物线的解析式为y=a(x-1)2-4,
∵直线y=3x-7与抛物线的另一个交点为(4,5),
代入y=a(x-1)2-4,
解得a=1,
∴抛物线的解析式为y=(x-1)2-4
即为:y=x2-2x-3.
(2)由y=x2-2x-3可得出,
C(0,-3),B(3,0),M(1,-4),
设直线BM的解析式为y=kx+b,把B、M两点代入求得,
直线BM的解析式为y=2x-6,
∴P(t,2t-6),QP=6-2t,CO=3,QO=t,
∴S梯形PQOC=
1
2
(6-2t+3)t=-t2+
9
2
t,
因此S=-t2+
9
2
t,(1<t<3).
(3)不同意他的观点.
假设x2-10x+36=11,
解得x1=x2=5,
∴当X=5时x2-10x+36等于11,
因此无论x取什么实数,x2-10x+36的值都不可能等于11的说法是错误的.
************************************************************************************
^__^真心祝你学习进步,如果你对这个答案有什么疑问,请追问,
另外如果你觉得我的回答对你有所帮助,请千万别忘记采纳哟!
如果有其他问题,欢迎向我求助。与本题无关的就请不要追问了。
答题不易呀。懂了记得选满意。
************************************************************************************
http://www.jyeoo.com/Math/Ques/Detail/2a3a2b94-da80-433c-a78d-6d9323719fb1
∴抛物线的对称轴为x=1,
又∵抛物线的顶点M在直线y=3x-7上,
∴M(1,-4),
设抛物线的解析式为y=a(x-1)2-4,
∵直线y=3x-7与抛物线的另一个交点为(4,5),
代入y=a(x-1)2-4,
解得a=1,
∴抛物线的解析式为y=(x-1)2-4
即为:y=x2-2x-3.
(2)由y=x2-2x-3可得出,
C(0,-3),B(3,0),M(1,-4),
设直线BM的解析式为y=kx+b,把B、M两点代入求得,
直线BM的解析式为y=2x-6,
∴P(t,2t-6),QP=6-2t,CO=3,QO=t,
∴S梯形PQOC=
1
2
(6-2t+3)t=-t2+
9
2
t,
因此S=-t2+
9
2
t,(1<t<3).
(3)不同意他的观点.
假设x2-10x+36=11,
解得x1=x2=5,
∴当X=5时x2-10x+36等于11,
因此无论x取什么实数,x2-10x+36的值都不可能等于11的说法是错误的.
************************************************************************************
^__^真心祝你学习进步,如果你对这个答案有什么疑问,请追问,
另外如果你觉得我的回答对你有所帮助,请千万别忘记采纳哟!
如果有其他问题,欢迎向我求助。与本题无关的就请不要追问了。
答题不易呀。懂了记得选满意。
************************************************************************************
http://www.jyeoo.com/Math/Ques/Detail/2a3a2b94-da80-433c-a78d-6d9323719fb1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询