定义域为R的函数f(x)满足f(x+1)=2f(x)

在x∈(0,1]f(x)=x^2-x在x∈[-2,-1]上f(x)的最小值... 在x∈(0,1] f(x)=x^2-x 在x∈[-2,-1]上f(x)的最小值 展开
暖眸敏1V
2014-02-05 · TA获得超过9.6万个赞
知道大有可为答主
回答量:1.8万
采纳率:90%
帮助的人:9699万
展开全部
函数f(x)满足f(x+1)=2f(x)
即f(x)=1/2f(x+1)
在x∈(0,1] f(x)=x^2-x

设x∈(-1,0],那么x+1∈(0,1]
∴f(x)=1/2f(x+1)=1/2*[(x+1)^2-(x+1)]
即f(x)=1/2*(x^2+x) x∈(-1,0]

设x∈(-2,-1],那么x+1∈(-1,0]
∴f(x)=1/2f(x+1)=1/4[(x+1)^2+(x+1)]
=1/4(x^2+3x+2)
=1/4(x+3/2)^2-1/16
∴当x=-3/2时,f(x)取得最小值-1/16
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式