已知函数f(x)=sin(2x-π/6),x∈R
(1)求f(x)的最小正周期T(2)求f(0)的值(3)设α是第一象限角,且f(α+π/3)=3/5,求sinα的值...
(1)求f(x)的最小正周期T
(2)求f(0)的值
(3)设α是第一象限角,且f(α+π/3)=3/5,求sinα的值 展开
(2)求f(0)的值
(3)设α是第一象限角,且f(α+π/3)=3/5,求sinα的值 展开
展开全部
解:
f(x)=sin2xcosπ/6+cos2xsinπ/6+sin2xcosπ/6-cos2xsinπ/6+1+cos2x
=2sin2xcosπ/6+cos2x+1
=√3sin2x+cos2x+1
=2sin(2x+π/6)+1
⑴f(x)取得最大值3,此时2x+π/6=π/2+2kπ,即x=π/6+kπ,k∈Z
故x的取值集合为{x|x=π/6+kπ,k∈Z}
⑵由2x+π/6∈[-π/2+2kπ,π/2+2kπ](k∈Z)得,
x∈[-π/3+kπ,π/6+kπ](k∈Z)
故函数f(x)的单调递增区间为[-π/3+kπ,π/6+kπ](k∈Z)
⑶f(x)≥2⇔2sin(2x+π/6)+1≥2⇔sin(2x+π/6)≥1/2
⇔π/6+2kπ≤2x+π/6≤5π/6+2kπ
⇔kπ≤x≤π/3+kπ(k∈Z)
故f(x)≥2的x的取值范围是[kπ,π/3+kπ](k∈Z)
f(x)=sin2xcosπ/6+cos2xsinπ/6+sin2xcosπ/6-cos2xsinπ/6+1+cos2x
=2sin2xcosπ/6+cos2x+1
=√3sin2x+cos2x+1
=2sin(2x+π/6)+1
⑴f(x)取得最大值3,此时2x+π/6=π/2+2kπ,即x=π/6+kπ,k∈Z
故x的取值集合为{x|x=π/6+kπ,k∈Z}
⑵由2x+π/6∈[-π/2+2kπ,π/2+2kπ](k∈Z)得,
x∈[-π/3+kπ,π/6+kπ](k∈Z)
故函数f(x)的单调递增区间为[-π/3+kπ,π/6+kπ](k∈Z)
⑶f(x)≥2⇔2sin(2x+π/6)+1≥2⇔sin(2x+π/6)≥1/2
⇔π/6+2kπ≤2x+π/6≤5π/6+2kπ
⇔kπ≤x≤π/3+kπ(k∈Z)
故f(x)≥2的x的取值范围是[kπ,π/3+kπ](k∈Z)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询