如图,在△ABC中,AB=BC=2,以AB为直径的圆O分别交BC,AC于点D,E,且点D为边BC的中点
(1)求证:△ABC为等边三角形(2)求DE的长(3)在线段AB的延长线上是否存在一点P,使△PBD全等△AED?若存在,请求出PB的长;若不存在,请说明理由...
(1)求证:△ABC为等边三角形
(2)求DE的长
(3)在线段AB的延长线上是否存在一点P,使△PBD全等△AED?若存在,请求出PB的长;若不存在,请说明理由 展开
(2)求DE的长
(3)在线段AB的延长线上是否存在一点P,使△PBD全等△AED?若存在,请求出PB的长;若不存在,请说明理由 展开
1个回答
展开全部
1)连AE,
因为AB为直径
所以∠AEB=90
因为AB=AC
所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)
因为∠CBF=(1/2)∠BAC
所以∠CBF=∠BAE
因为∠BAE+∠ABE=90
所以∠ABE+∠CBF=90
因为B在圆上
所以直线BF是⊙O的切线
2)因为∠CBF=∠BAE
所以sin∠CBF=sin∠BAE=BE/AB=BE/5
所以BE=5×√5/5=√5
所以BC=2BE=2√5
在直角三角形ABE中,由勾股定理,得AE=2√5
由△ABC面积不变,得,
AC×BD=BC×AE,
即5BD=2√5*2√5
解得BD=4,
在直角三角形ABD中,由勾股定理,得AD=3,
由∠ADB=∠ABF=90,∠BAD为公共角
得△ABD∽△AFB,,
所以BD/FB=AD/AB
即4/BF=3/5
即得BF=20/3
以上回答你满意么?
因为AB为直径
所以∠AEB=90
因为AB=AC
所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)
因为∠CBF=(1/2)∠BAC
所以∠CBF=∠BAE
因为∠BAE+∠ABE=90
所以∠ABE+∠CBF=90
因为B在圆上
所以直线BF是⊙O的切线
2)因为∠CBF=∠BAE
所以sin∠CBF=sin∠BAE=BE/AB=BE/5
所以BE=5×√5/5=√5
所以BC=2BE=2√5
在直角三角形ABE中,由勾股定理,得AE=2√5
由△ABC面积不变,得,
AC×BD=BC×AE,
即5BD=2√5*2√5
解得BD=4,
在直角三角形ABD中,由勾股定理,得AD=3,
由∠ADB=∠ABF=90,∠BAD为公共角
得△ABD∽△AFB,,
所以BD/FB=AD/AB
即4/BF=3/5
即得BF=20/3
以上回答你满意么?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询