1个回答
展开全部
已知x²+y²=1; xy(x+y)=15/16。 求y/(x²)+x/(y²)
解:设x+y=u,xy=v;则:
x²+y²=(x+y)²-2xy=u²-2v=1...........(1);uv=15/16..........(2)
由(1)(2)得u=3/2,v=5/8;
故y/x²+x/y²=(y³+x³)/(x²y²)=(x+y)(x²-xy+y²)/(x²y²)
=(x+y)[(x+y)²-3xy]/(xy)²=u(u²-3v)/v²=(3/2)[(9/4)-15/8]/(25/64)=36/25.
解:设x+y=u,xy=v;则:
x²+y²=(x+y)²-2xy=u²-2v=1...........(1);uv=15/16..........(2)
由(1)(2)得u=3/2,v=5/8;
故y/x²+x/y²=(y³+x³)/(x²y²)=(x+y)(x²-xy+y²)/(x²y²)
=(x+y)[(x+y)²-3xy]/(xy)²=u(u²-3v)/v²=(3/2)[(9/4)-15/8]/(25/64)=36/25.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询