已知w>0,函数f(x)=sin(wx+π/4)在(π/2,π)上单调递减,则w的取值范围是?
1个回答
展开全部
f(x)=sin(wx+π/4)(w>0)的减区间由(2k+1/2)π<wx+π/4<(2k+3/2)π,k∈Z确定,
各减π/4,(2k+1/4)π<wx<(2k+5/4)π,
各除以w,(2k+1/4)π/w<x<(2k+5/4)π/w,
f(x)在(π/2,π)递减,
∴(2k+1/4)π/w<=π/2,π<=(2k+5/4)π/w,
∴(2k+1/4)/w<=1/2,1<=(2k+5/4)/w,
∴(4k+1/2)<=w<=(2k+5/4),
∴k<=3/8,
∴k=0,1/2<=w<=5/4,为所求.
各减π/4,(2k+1/4)π<wx<(2k+5/4)π,
各除以w,(2k+1/4)π/w<x<(2k+5/4)π/w,
f(x)在(π/2,π)递减,
∴(2k+1/4)π/w<=π/2,π<=(2k+5/4)π/w,
∴(2k+1/4)/w<=1/2,1<=(2k+5/4)/w,
∴(4k+1/2)<=w<=(2k+5/4),
∴k<=3/8,
∴k=0,1/2<=w<=5/4,为所求.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询