如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm

如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,... 如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE= AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形? 展开
 我来答
伤春春始终1469
2014-08-27 · 超过70用户采纳过TA的回答
知道答主
回答量:134
采纳率:100%
帮助的人:53.3万
展开全部
(1)△ABC≌△CDA,
∴AD=BC,AB=CD,
∴四边形ABCD是平行四边形
(2)从运动开始经过2s或 s或 s或 s时,△BEP为等腰三角形


试题分析:(1)证明:∵在△ABC和△CDA中

∴△ABC≌△CDA,
∴AD=BC,AB=CD,
∴四边形ABCD是平行四边形.
(2)解:∵∠BAC=90°,BC=5cm,AB=3cm,′
由勾股定理得:AC=4cm,
即AB、CD间的最短距离是4cm,
∵AB=3cm,AE= AB,
∴AE=1cm,BE=2cm,
设经过ts时,△BEP是等腰三角形,
当P在BC上时,
①BP=EB=2cm,
t=2时,△BEP是等腰三角形;
②BP=PE,
作PM⊥AB于M,
∴BM=ME= BE=1cm
∵cos∠ABC= = =
∴BP= cm,
t= 时,△BEP是等腰三角形;
③BE=PE=2cm,
作EN⊥BC于N,则BP=2BN,
∴cosB= =
=
BN= cm,
∴BP=
∴t= 时,△BEP是等腰三角形;
当P在CD上不能得出等腰三角形,
∵AB、CD间的最短距离是4cm,CA⊥AB,CA=4cm,
当P在AD上时,只能BE=EP=2cm,
过P作PQ⊥BA于Q,
∵平行四边形ABCD,
∴AD∥BC,
∴∠QAD=∠ABC,
∵∠BAC=∠Q=90°,
∴△QAP∽△ABC,
∴PQ:AQ:AP=4:3:5,
设PQ=4xcm,AQ=3xcm,
在△EPQ中,由勾股定理得:(3x+1) 2 +(4x) 2 =2 2
∴x=
AP=5x= cm,
∴t=5+5+3﹣ =
答:从运动开始经过2s或 s或 s或 s时,△BEP为等腰三角形.

点评:本题主要考查对平行四边形的性质和判定,相似三角形的性质和判定.全等三角形的性质和判定,勾股定理,等腰三角形的性质,勾股定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式