平行四边形ABCD所在平面a外有一点P,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB

平行四边形ABCD所在平面a外有一点P,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB、AD.... 平行四边形ABCD所在平面a外有一点P,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB、AD. 展开
 我来答
天宇7661
推荐于2016-12-01 · 超过79用户采纳过TA的回答
知道答主
回答量:127
采纳率:50%
帮助的人:75.9万
展开全部
证明:连接AC、BD交与一点O,连接PO,PA、PC、PB、PD,
则由PA=PB=PC=PD,所以三角形PAC为等腰三角形,
O是AC的中点,所以PO⊥AC,同理可以证明PO⊥BD,
又AC∩BD=O,所以PO⊥平面ABCD,
而AB?平面ABCD,BD?平面ABCD,从而PO垂直于AB、AD.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式