已知定义域为R的函数y=f(x-1)是奇函数,y=g(x)是y=f(x)的反函数,若x1+x2=0,则g(x1)+g(x2)=__
已知定义域为R的函数y=f(x-1)是奇函数,y=g(x)是y=f(x)的反函数,若x1+x2=0,则g(x1)+g(x2)=______....
已知定义域为R的函数y=f(x-1)是奇函数,y=g(x)是y=f(x)的反函数,若x1+x2=0,则g(x1)+g(x2)=______.
展开
展开全部
由题意知
∵函数y=f(x-1)是定义在R上的奇函数
其图象关于原点对称
∴函数y=f(x)的图象,由函数y=f(x-1)的图象向左平移一个单位得到
∴函数y=f(x)的图象关于(-1,0)点对称
又∵y=g(x)是y=f(x)的反函数
∴函数y=g(x)的图象与函数y=f(x)的图象关于直线x-y=0对称
故函数y=g(x)的图象关于(0,-1)点中心对称图形
∴点(x1,g(x1))和点(x2,g(x2))是关于点(0,-1)中心对称
∴
=0,
=?1
∵x1+x2=0
∴g(x1)+g(x2)=-2
故答案为:-2
∵函数y=f(x-1)是定义在R上的奇函数
其图象关于原点对称
∴函数y=f(x)的图象,由函数y=f(x-1)的图象向左平移一个单位得到
∴函数y=f(x)的图象关于(-1,0)点对称
又∵y=g(x)是y=f(x)的反函数
∴函数y=g(x)的图象与函数y=f(x)的图象关于直线x-y=0对称
故函数y=g(x)的图象关于(0,-1)点中心对称图形
∴点(x1,g(x1))和点(x2,g(x2))是关于点(0,-1)中心对称
∴
x1+x2 |
2 |
g(x1)+g(x2) |
2 |
∵x1+x2=0
∴g(x1)+g(x2)=-2
故答案为:-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询