已知二次函数y=x2+mx+m-5,(1)求证:不论m取何值时,抛物线总与x轴有两个交点;(2)求当m取何值时,抛
已知二次函数y=x2+mx+m-5,(1)求证:不论m取何值时,抛物线总与x轴有两个交点;(2)求当m取何值时,抛物线与x轴两交点之间的距离最短....
已知二次函数y=x2+mx+m-5,(1)求证:不论m取何值时,抛物线总与x轴有两个交点;(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.
展开
1个回答
展开全部
(1)根据b2-4ac与0的大小关系来判断二次函数与x轴交点的个数,
即m2-4×1×(m-5)=m2-4m+20=(m-2)2+16>0,
所以抛物线总与x轴有两个交点;
(2)设函数与x轴两个交点的值为x1,x2,且x2>x1,
x1+x2=-m,且x1?x2=m-5,
所以(x2-x1)2=(x1+x2)2-4x1x2=m2-4(m-5)=m2-4m+20=(m-2)2+16,
所以当m=2时,x2-x1有最小值4,
所以,抛物线与x轴两交点之间的距离最短为4.
即m2-4×1×(m-5)=m2-4m+20=(m-2)2+16>0,
所以抛物线总与x轴有两个交点;
(2)设函数与x轴两个交点的值为x1,x2,且x2>x1,
x1+x2=-m,且x1?x2=m-5,
所以(x2-x1)2=(x1+x2)2-4x1x2=m2-4(m-5)=m2-4m+20=(m-2)2+16,
所以当m=2时,x2-x1有最小值4,
所以,抛物线与x轴两交点之间的距离最短为4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询