设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1

设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(Ⅰ)若|AB|=4,△ABF2... 设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(Ⅰ)若|AB|=4,△ABF2的周长为16,求|AF2|;(Ⅱ)若cos∠AF2B=35,求椭圆E的离心率. 展开
 我来答
55ing0279
2014-10-11 · 超过70用户采纳过TA的回答
知道答主
回答量:165
采纳率:100%
帮助的人:54.1万
展开全部
(Ⅰ)∵|AB|=4,|AF1|=3|F1B|,
∴|AF1|=3,|F1B|=1,
∵△ABF2的周长为16,
∴4a=16,
∴|AF1|+|AF2|=2a=8,
∴|AF2|=5;
(Ⅱ)设|F1B|=k(k>0),则|AF1|=3k,|AB|=4k,
∴|AF2|=2a-3k,|BF2|=2a-k
∵cos∠AF2B=
3
5

∴(4k)2=(2a-3k)2+(2a-k)2-
6
5
(2a-3k)(2a-k),
化简可得a=3k,
∴|AF2|=|AF1|=3k,|BF2|=5k
∴|BF2|2=|AF2|2+|AB|2
∴AF1⊥AF2
∴△AF1F2等腰直角三角形
∴c=
2
2
a,
∴e=
c
a
=
2
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式