设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1
设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(Ⅰ)若|AB|=4,△ABF2...
设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(Ⅰ)若|AB|=4,△ABF2的周长为16,求|AF2|;(Ⅱ)若cos∠AF2B=35,求椭圆E的离心率.
展开
1个回答
展开全部
(Ⅰ)∵|AB|=4,|AF1|=3|F1B|,
∴|AF1|=3,|F1B|=1,
∵△ABF2的周长为16,
∴4a=16,
∴|AF1|+|AF2|=2a=8,
∴|AF2|=5;
(Ⅱ)设|F1B|=k(k>0),则|AF1|=3k,|AB|=4k,
∴|AF2|=2a-3k,|BF2|=2a-k
∵cos∠AF2B=
,
∴(4k)2=(2a-3k)2+(2a-k)2-
(2a-3k)(2a-k),
化简可得a=3k,
∴|AF2|=|AF1|=3k,|BF2|=5k
∴|BF2|2=|AF2|2+|AB|2,
∴AF1⊥AF2,
∴△AF1F2是等腰直角三角形,
∴c=
a,
∴e=
=
.
∴|AF1|=3,|F1B|=1,
∵△ABF2的周长为16,
∴4a=16,
∴|AF1|+|AF2|=2a=8,
∴|AF2|=5;
(Ⅱ)设|F1B|=k(k>0),则|AF1|=3k,|AB|=4k,
∴|AF2|=2a-3k,|BF2|=2a-k
∵cos∠AF2B=
3 |
5 |
∴(4k)2=(2a-3k)2+(2a-k)2-
6 |
5 |
化简可得a=3k,
∴|AF2|=|AF1|=3k,|BF2|=5k
∴|BF2|2=|AF2|2+|AB|2,
∴AF1⊥AF2,
∴△AF1F2是等腰直角三角形,
∴c=
| ||
2 |
∴e=
c |
a |
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询