在数列{an}(n∈N*)中,a1=1,前n项和Sn满足nSn+1-(n+3)Sn=0.(1)求{an}的通项公式;(2)若bn=4(ann
在数列{an}(n∈N*)中,a1=1,前n项和Sn满足nSn+1-(n+3)Sn=0.(1)求{an}的通项公式;(2)若bn=4(ann)2,求数列{(-1)nbn}...
在数列{an}(n∈N*)中,a1=1,前n项和Sn满足nSn+1-(n+3)Sn=0.(1)求{an}的通项公式;(2)若bn=4(ann)2,求数列{(-1)nbn}的前n项和Tn;(3)求证:1+a1a1?1+a2a2?…?1+anan<9.
展开
1个回答
展开全部
(1)方法1:∵
=
(n∈N*),且S1=a1=1,
∴当n≥2时,Sn=S1?
?
?…?
=1×
×
×
×…×
=
,且S1=1也适合.
当n≥2时,an=Sn?Sn?1=
,且a1=1也适合,∴an=
(n∈N*).
方法2:∵nSn+1-(n+3)Sn=0,∴(n-1)Sn-(n+2)Sn-1=0,
两式相减,得n(Sn+1-Sn)=(n+2)(Sn-Sn-1),即nan+1=(n+2)an,即
=
(n≥2).
又∵可求得a2=3,∴
=3也适合上式.综上,得
=
(n∈N*).
当n≥2时,an=a1?
?
?…?
=1×
Sn+1 |
Sn |
n+3 |
n |
∴当n≥2时,Sn=S1?
S2 |
S1 |
S3 |
S2 |
Sn |
Sn?1 |
4 |
1 |
5 |
2 |
6 |
3 |
n+2 |
n?1 |
n(n+1)(n+2) |
6 |
当n≥2时,an=Sn?Sn?1=
n(n+1) |
2 |
n(n+1) |
2 |
方法2:∵nSn+1-(n+3)Sn=0,∴(n-1)Sn-(n+2)Sn-1=0,
两式相减,得n(Sn+1-Sn)=(n+2)(Sn-Sn-1),即nan+1=(n+2)an,即
an+1 |
an |
n+2 |
n |
又∵可求得a2=3,∴
a2 |
a1 |
an+1 |
an |
n+2 |
n |
当n≥2时,an=a1?
a2 |
a1 |
a3 |
a2 |
an |
an?1 |
3 |