(2011?上海模拟)如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且AB∥CD,∠BAD=90°,PA=

(2011?上海模拟)如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且AB∥CD,∠BAD=90°,PA=AD=DC=2,AB=4.(1)求证:... (2011?上海模拟)如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且AB∥CD,∠BAD=90°,PA=AD=DC=2,AB=4.(1)求证:BC⊥PC;(2)求点A到平面PBC的距离. 展开
 我来答
U繾講
2015-01-13 · 超过56用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:142万
展开全部
方法1
(I)证明:在直角梯形ABCD中,∵AB∥CD,∠BAD=90°,AD=DC=2
∴∠ADC=90°,且 AC=2
2

取AB的中点E,连接CE,
由题意可知,四边形AECD为正方形,所以AE=CE=2,
BE=
1
2
AB=2
,所以 CE=
1
2
AB

则△ABC为等腰直角三角形,
所以AC⊥BC,
又因为PA⊥平面ABCD,且AC为PC在平面ABCD内的射影,BC?平面ABCD,由三垂线定理得,BC⊥PC
(II)由(I)可知,BC⊥PC,BC⊥AC,PC∩AC=C,
所以BC⊥平面PAC,BC?平面PBC,
所以平面PBC⊥平面PAC,
过A点在平面PAC内作AF⊥PC于F,所以AF⊥平面PBC,
则AF的长即为点A到平面PBC的距离,
在直角三角形PAC中,PA=2,AC=2
2
PC=2
3

所以 AF=
2
6
3
即点A到平面PBC的距离为
2
6
3

方法2
∵AP⊥平面ABCD,∠BAD=90°
∴以A为原点,AD、AB、AP分别为x、y、z轴,建立空间直角坐标系
∵PA=AD=DC=2,AB=4.
∴B(0,4,0),D(2,0,0),C(2,2,0),P(0,0,2)
(I)∴
BC
=(2,?2,0),
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消