已知函数f(x)=x2+ax(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)

已知函数f(x)=x2+ax(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.... 已知函数f(x)=x2+ax(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围. 展开
 我来答
愚珈蓝致0i075d
推荐于2016-06-23 · TA获得超过162个赞
知道答主
回答量:152
采纳率:0%
帮助的人:115万
展开全部
(1)当a=0时,f(x)=x2
对任意x∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x),
∴f(x)为偶函数.
当a≠0时,f(x)=x2+
a
x
(x≠0,常数a∈R),
取x=±1,得f(-1)+f(1)=2≠0,
f(-1)-f(1)=-2a≠0,
∴f(-1)≠-f(1),f(-1)≠f(1).
∴函数f(x)既不是奇函数也不是偶函数.
(2)设2≤x1<x2
f(x1)-f(x2)=x21+
a
x1
?x22?
a
x2
=
(x1?x2)
x1x2
[x1x2(x1+x2)-a],
要使函数f(x)在x∈[2,+∞)上为增函数,
必须f(x1)-f(x2)<0恒成立.
∵x1-x2<0,x1x2>4,
即a<x1x2(x1+x2)恒成立.
又∵x1+x2>4,∴x1x2(x1+x2)>16,
∴a的取值范围是(-∞,16].
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式