排列组合的应用题 10

就各位帮帮忙,帮帮我讲一下等分,不等分,部分等分的区别和公式,请将详细而又容易懂得的方法来区分公式的应用?... 就各位帮帮忙,帮帮我讲一下等分,不等分,部分等分的区别和公式,请将详细而又容易懂得的方法来区分公式的应用? 展开
 我来答
若以下回答无法解决问题,邀请你更新回答
yanhuody
2009-04-04
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
解排列组合应用题的21种策略
排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.
1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
例1. 五人并排站成一排,如果 必须相邻且 在 的右边,那么不同的排法种数有( )
A、60种 B、48种 C、36种 D、24种
解析:把 视为一人,且 固定在 的右边,则本题相当于4人的全排列, 种,选 .
2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )
A、1440种 B、3600种 C、4820种 D、4800种
解析:除甲乙外,其余5个排列数为 种,再用甲乙去插6个空位有 种,不同的排法种数是 种,选 .
3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.
例3. 五人并排站成一排,如果 必须站在 的右边( 可以不相邻)那么不同的排法种数是( )
A、24种 B、60种 C、90种 D、120种
解析: 在 的右边与 在 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即 种,选 .
4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.
例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )
A、6种 B、9种 C、11种 D、23种
解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选 .
5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.
例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )
A、1260种 B、2025种 C、2520种 D、5040种
解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有 种,选 .
(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )
A、 种 B、 种 C、 种 D、 种
答案: .
6.全员分配问题分组法:
例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?
解析:把四名学生分成3组有 种方法,再把三组学生分配到三所学校有 种,故共有 种方法.
说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.
(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )
A、480种 B、240种 C、120种 D、96种
答案: .
7.名额分配问题隔板法:
例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?
解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为 种.
8.限制条件的分配问题分类法:
例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?
解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:
①若甲乙都不参加,则有派遣方案 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有 方法,所以共有 ;③若乙参加而甲不参加同理也有 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有 种,共有 方法.所以共有不同的派遣方法总数为 种.
9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.
例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )
A、210种 B、300种 C、464种 D、600种
解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有 个,
个,合并总计300个,选 .
(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?
解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做 共有14个元素,不能被7整除的数组成的集合记做 共有86个元素;由此可知,从 中任取2个元素的取法有 ,从 中任取一个,又从 中任取一个共有 ,两种情形共符合要求的取法有 种.
(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?
解析:将 分成四个不相交的子集,能被4整除的数集 ;能被4除余1的数集 ,能被4除余2的数集 ,能被4除余3的数集 ,易见这四个集合中每一个有25个元素;从 中任取两个数符合要;从 中各取一个数也符合要求;从 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有 种.
10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式 .
例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?
解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:
种.
11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
例11.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?
解析:老师在中间三个位置上选一个有 种,4名同学在其余4个位置上有 种方法;所以共有 种。.
12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。
例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )
A、36种 B、120种 C、720种 D、1440种
解析:前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共 种,选 .
(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?
解析:看成一排,某2个元素在前半段四个位置中选排2个,有 种,某1个元素排在后半段的四个位置中选一个有 种,其余5个元素任排5个位置上有 种,故共有 种排法.
13.“至少”“至多”问题用间接排除法或分类法:
例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙 型电视机各一台,则不同的取法共有 ( )
A、140种 B、80种 C、70种 D、35种
解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有 种,选.
解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有 台,选 .
14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.
例14.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?
解析:先取四个球中二个为一组,另二组各一个球的方法有 种,再排:在四个盒中每次排3个有 种,故共有 种.
(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?
解析:先取男女运动员各2名,有 种,这四名运动员混和双打练习有 中排法,故共有 种.
15.部分合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求.
例15.(1)以正方体的顶点为顶点的四面体共有( )
A、70种 B、64种 C、58种 D、52种
解析:正方体8个顶点从中每次取四点,理论上可构成 四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有 个.
(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有( )
A、150种 B、147种 C、144种 D、141种
解析:10个点中任取4个点共有 种,其中四点共面的有三种情况:①在四面体的四个面上,每面内四点共面的情况为 ,四个面共有 个;②过空间四边形各边中点的平行四边形共3个;③过棱上三点与对棱中点的三角形共6个.所以四点不共面的情况的种数是 种.
16.圆排问题单排法:把 个不同元素放在圆周 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列 个普通排列:
在圆排列中只算一种,因为旋转后可以重合,故认为相同, 个元素的圆排列数有 种.因此可将某个元素固定展成单排,其它的 元素全排列.
例16.5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?
解析:首先可让5位姐姐站成一圈,属圆排列有 种,然后在让插入其间,每位均可插入其姐姐的左边和右边,有2种方式,故不同的安排方式 种不同站法.
说明:从 个不同元素中取出 个元素作圆形排列共有 种不同排法.
17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地 个不同元素排在 个不同位置的排列数有 种方法.
例17.把6名实习生分配到7个车间实习共有多少种不同方法?
解析:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有 种不同方案.
18.复杂排列组合问题构造模型法:
例18.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?
解析:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯 种方法,所以满足条件的关灯方案有10种.
说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题容易解决.
19.元素个数较少的排列组合问题可以考虑枚举法:
例19.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?
解析:从5个球中取出2个与盒子对号有 种,还剩下3个球与3个盒子序号不能对应,利用枚举法分析,如果剩下3,4,5号球与3,4,5号盒子时,3号球不能装入3号盒子,当3号球装入4号盒子时,4,5号球只有1种装法,3号球装入5号盒子时,4,5号球也只有1种装法,所以剩下三球只有2种装法,因此总共装法数为 种.
20.复杂的排列组合问题也可用分解与合成法:
例20.(1)30030能被多少个不同偶数整除?
解析:先把30030分解成质因数的形式:30030=2×3×5×7×11×13;依题意偶因数2必取,3,5,7,11,13这5个因数中任取若干个组成成积,所有的偶因数为
个.
(2)正方体8个顶点可连成多少队异面直线?
解析:因为四面体中仅有3对异面直线,可将问题分解成正方体的8个顶点可构成多少个不同的四面体,从正方体8个顶点中任取四个顶点构成的四面体有 个,所以8个顶点可连成的异面直线有3×58=174对.
21.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.
例21.(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点有多少个?
解析:因为圆的一个内接四边形的两条对角线相交于圆内一点,一个圆的内接四边形就对应着两条弦相交于圆内的一个交点,于是问题就转化为圆周上的10个点可以确定多少个不同的四边形,显然有 个,所以圆周上有10点,以这些点为端点的弦相交于圆内的交点有 个.
(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从 到 的最短路径有多少种?

解析:可将图中矩形的一边叫一小段,从 到 最短路线必须走7小段,其中:向东4段,向北3段;而且前一段的尾接后一段的首,所以只要确定向东走过4段的走法,便能确定路径,因此不同走法有 种.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式