已知圆C(X+2)^2+Y^2=4,互相垂直的两条直线L1,L2都过点A(A,0),求(1)若L1,L2都和圆C相切,求直线L1,L2的方程
(2)当A=2时,若圆心为M(1,M)的圆和圆C外切且与直线L1,L2都相切,求圆M的方程急急急...
(2)当A=2时,若圆心为M(1,M)的圆和圆C外切且与直线L1,L2都相切,求圆M的方程
急急急 展开
急急急 展开
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
1个回答
展开全部
依题意,可设圆M的方程为:(x- 1)^2+(y-m)^2=r^2,
而圆C的圆心为 (-2,0),半径为2,圆M与圆C外切,
所以(1+2)^2+(m-0)^2=(r+2)^2 ,化简得:m^2=r^2+4r-5.(1).
又相互垂直的两条直线L1、 L2都过(2,0),且与圆M 相切,
故圆M的圆心(1,m)与L1、L2的垂足(2,0)的连线平分直角,
且其长为圆M的半径的(根号2)倍.
即 (1-2)^2+(m-0)^2=(根号2*r)^2 ,化简得:m^2=2r^2-1.(2).
联立(1)、(2),解方程组,得:r=2,m= 根号7 或 -根号7.
所以所求圆M的方程为:(x-1)^2+(y-根号7)^2=4 或 (x-1)^2+(y+根号7)^2=4.
而圆C的圆心为 (-2,0),半径为2,圆M与圆C外切,
所以(1+2)^2+(m-0)^2=(r+2)^2 ,化简得:m^2=r^2+4r-5.(1).
又相互垂直的两条直线L1、 L2都过(2,0),且与圆M 相切,
故圆M的圆心(1,m)与L1、L2的垂足(2,0)的连线平分直角,
且其长为圆M的半径的(根号2)倍.
即 (1-2)^2+(m-0)^2=(根号2*r)^2 ,化简得:m^2=2r^2-1.(2).
联立(1)、(2),解方程组,得:r=2,m= 根号7 或 -根号7.
所以所求圆M的方程为:(x-1)^2+(y-根号7)^2=4 或 (x-1)^2+(y+根号7)^2=4.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询