已知函数对于任意的实数a,b,都有f(ab)=f(a)+f(b)成立。那么对任意的x∈R,f(x)是否都为0?
高一数学,做题遇到这样一个函数。已知函数对于任意的实数a,b,都有f(ab)=f(a)+f(b)成立。原题是这样说的:已知函数f(x)对任意实数a,b,都有f(ab)=f...
高一数学,做题遇到这样一个函数。已知函数对于任意的实数a,b,都有f(ab)=f(a)+f(b)成立。
原题是这样说的:
已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.
1)求f(0),f(1)的值 ;
2)求证f(1/x)+f(x)=0;
3)若f(2)=m,f(3)=n(m,n均为常数),求f(36)的值.
现在问题来了,令a=b=0,则f(0)=f(0)+f(0),可得f(0)=0。令a=0,则f(0)=f(0)+f(b),则f(b)=0,即推出这一结论:对任意的x∈R,f(x)是否都为0。既然已经推得这一结论,那么原题的2、3小问还有何意义?不就直接出来了嘛?还是我的证明有问题呢……求解。 展开
原题是这样说的:
已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.
1)求f(0),f(1)的值 ;
2)求证f(1/x)+f(x)=0;
3)若f(2)=m,f(3)=n(m,n均为常数),求f(36)的值.
现在问题来了,令a=b=0,则f(0)=f(0)+f(0),可得f(0)=0。令a=0,则f(0)=f(0)+f(b),则f(b)=0,即推出这一结论:对任意的x∈R,f(x)是否都为0。既然已经推得这一结论,那么原题的2、3小问还有何意义?不就直接出来了嘛?还是我的证明有问题呢……求解。 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询