利用极限存在准则证明题目。怎么做?
展开全部
a1=√2
for n>=2
an = √[2+a(n-1)]
{an } is increasing
an = √[2+a(n-1)]
(an)^2 = 2+a(n-1)
(an)^2 - a(n-1) - 2 =0
(an)^2 - an - 2 <0
(an -1/2)^2 < 5/2
√2 <an < (1+ √10)/2
{an} is bounded
=> lim(n->∞) an exists
for n>=2
an = √[2+a(n-1)]
{an } is increasing
an = √[2+a(n-1)]
(an)^2 = 2+a(n-1)
(an)^2 - a(n-1) - 2 =0
(an)^2 - an - 2 <0
(an -1/2)^2 < 5/2
√2 <an < (1+ √10)/2
{an} is bounded
=> lim(n->∞) an exists
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询