解关于复数z方程z^3+8i=0
z^3+8i=0
z^3=-8i
因此z=2*(-i 开三次方)
-i 的幅角为3π/2
因此z=2[cos(3π/2+2kπ)/3+isin(3π/2+2kπ)/3]
=2[cos(π/2+2kπ/3)+isin(π/2+2kπ/3)] k=0,1,2
k=0时:z1=2[cos(π/2)+isin(π/2)]=2i
k=1时:z2=2[cos(π/2+2π/3)+isin(π/2+2π/3)]
=2[-sin(2π/3)+icos(2π/3)]
=-√3+i
k=2时:z3=2[cos(π/2+4π/3)+isin(π/2+4π/3)]
=2[-sin(4π/3)+icos(4π/3)]
=2[sin(π/3)-icos(π/3)]
=√3-i
扩展资料
一个数有多少个方根,这个问题既与数的所在范围有关,也与方根的次数有关。在实数范围内,任一实数的奇数次方根有且仅有一个,例如8的3次方根为2,-8的 3次方根为-2。
正实数的偶数次方根是两个互为相反数的数,例如16的4次方根为2和-2;负实数不存在偶数次方根;零的任何次方根都是零。在复数范围内,无论n是奇数或偶数,任一个非零的复数的n次方根都有n个。如果复数
r=z,那么它的n个n次方根是,k=0,1,2…,n-1。
2024-04-02 广告
z^3=-8i
因此z=2*(-i 开三次方)
-i 的幅角为3π/2
因此z=2[cos(3π/2+2kπ)/3+isin(3π/2+2kπ)/3]
=2[cos(π/2+2kπ/3)+isin(π/2+2kπ/3)] k=0,1,2
k=0时:z1=2[cos(π/2)+isin(π/2)]=2i
k=1时:z2=2[cos(π/2+2π/3)+isin(π/2+2π/3)]
=2[-sin(2π/3)+icos(2π/3)]
=-√3+i
k=2时:z3=2[cos(π/2+4π/3)+isin(π/2+4π/3)]
=2[-sin(4π/3)+icos(4π/3)]
=2[sin(π/3)-icos(π/3)]
=√3-i