泰勒公式求极限。 10
1个回答
展开全部
根据烂芦题意,sin6x-tanx*f(x)~o(x^3)
根据泰勒展开,sin6x=6x-(6x)^3/3!+o(x^4),tanx=x+x^3/3+o(x^4)
f(x)=f(0)+f'(0)*x+f''(0)/2!*x^2+o(x^2)
所以sin6x-tanx*f(x)
=[6x-(6x)^3/3!+o(x^4)]-[x+x^3/3+o(x^4)][f(0)+f'(0)*x+f''(0)/2*x^2+o(x^2)]
=[6-f(0)]x-f'(0)*x^2-[36+f(0)/3+f''(0)/2]*x^3+o(x^3)
~o(x^3)
所以6-f(0)=0,且f'(0)=0,且宏历源36+f(0)/3+f''(0)/2=0
f(0)=6,f'(0)=0,f''(0)=-76
所蔽态以f(x)=6-38x^2+o(x^2)
lim(x->0) [6-f(x)]/x^2
=lim(x->0) [6-6+38x^2-o(x^2)]/x^2
=38
根据泰勒展开,sin6x=6x-(6x)^3/3!+o(x^4),tanx=x+x^3/3+o(x^4)
f(x)=f(0)+f'(0)*x+f''(0)/2!*x^2+o(x^2)
所以sin6x-tanx*f(x)
=[6x-(6x)^3/3!+o(x^4)]-[x+x^3/3+o(x^4)][f(0)+f'(0)*x+f''(0)/2*x^2+o(x^2)]
=[6-f(0)]x-f'(0)*x^2-[36+f(0)/3+f''(0)/2]*x^3+o(x^3)
~o(x^3)
所以6-f(0)=0,且f'(0)=0,且宏历源36+f(0)/3+f''(0)/2=0
f(0)=6,f'(0)=0,f''(0)=-76
所蔽态以f(x)=6-38x^2+o(x^2)
lim(x->0) [6-f(x)]/x^2
=lim(x->0) [6-6+38x^2-o(x^2)]/x^2
=38
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询