5个回答
展开全部
整数化成小数:整数.0(你喜欢多少个0都可以)
整数化分数:整数/1
整数化百分数:整数乘以100再加上%
小数基本不能化成整数;(只有小数点后面全部为0的可以,只要把0和小数点删除就可以了,其他的只能约等于整数)
小数化分数:该小数去掉0和小数点/1+N个0(N为原小数的小数点后有几位小数,就在1后面添几个0)。最后通常约分到最简分数。
小数化百分数:小数乘以100再加上%
分数基本不能化成整数;(只有分子是分母的整数倍的可以,其他的只能约等于整数)
分数化小数:用分子除以分母(部分可以直接算出结果,部分不可以直接算出结果,但可以用循环表示结果,而有部分算不出结果,例如无规则循环)。
分数化百分数:先把分数化成小数,再化百分数。
百分数基本不能化成整数;(只有百分数数字是100的整数倍的可以,其他的只能约等于整数)
百分数化为小数:去掉%,数值除以100(基本上就是小数点往左移两个位)
百分数化分数:先将百分数化小数,然后从小数化为分数
整数化分数:整数/1
整数化百分数:整数乘以100再加上%
小数基本不能化成整数;(只有小数点后面全部为0的可以,只要把0和小数点删除就可以了,其他的只能约等于整数)
小数化分数:该小数去掉0和小数点/1+N个0(N为原小数的小数点后有几位小数,就在1后面添几个0)。最后通常约分到最简分数。
小数化百分数:小数乘以100再加上%
分数基本不能化成整数;(只有分子是分母的整数倍的可以,其他的只能约等于整数)
分数化小数:用分子除以分母(部分可以直接算出结果,部分不可以直接算出结果,但可以用循环表示结果,而有部分算不出结果,例如无规则循环)。
分数化百分数:先把分数化成小数,再化百分数。
百分数基本不能化成整数;(只有百分数数字是100的整数倍的可以,其他的只能约等于整数)
百分数化为小数:去掉%,数值除以100(基本上就是小数点往左移两个位)
百分数化分数:先将百分数化小数,然后从小数化为分数
展开全部
整数不能化成小数;
整数化分数:整数=该整数除以1
整数化百分数:整数=该整数乘以100再加上%
小数不能化成整数;
小数化分数:小数=(该小数去掉0和小数点)作分子/(原小数的小数点后有几位小数,就在1后面添几个0)作分母。最后约分到最简分数。
小数化百分数:小数=该小数乘以100再加上%
分数化小数:用分子除以分母。
分数化百分数:先把分数化成小数,再化百分数。
整数化分数:整数=该整数除以1
整数化百分数:整数=该整数乘以100再加上%
小数不能化成整数;
小数化分数:小数=(该小数去掉0和小数点)作分子/(原小数的小数点后有几位小数,就在1后面添几个0)作分母。最后约分到最简分数。
小数化百分数:小数=该小数乘以100再加上%
分数化小数:用分子除以分母。
分数化百分数:先把分数化成小数,再化百分数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分数化小数就是用分子除以分母,除不尽的一般保留两位小数。如:4/5=4÷5=0.8
小数化成分数就是看小数的小数部分是几位,是一位的分母就是10,两位的是100,三位的是1000,以此类推,分子就是小数的小数部分的数字,能化简的一定化成最简分数,如:0.35=35/100=7/20.
百分数化成小数就是把百分数的数字部分小数点向左移动两位,再去掉百分号。如:34.5%=0.345
百分数化成分数就是把百分数看成是分母是100的分数,在化成最简分数。如:25%=25/100=1/4
小数化成百分数就是把小数点向右移动两位,再加上百分号。如:0.238=23.8%
分数化成百分数先把分数转换成小数(除不尽的保留三位小数),再化成百分数。如:3/8=0.375=37.5%
小数化成分数就是看小数的小数部分是几位,是一位的分母就是10,两位的是100,三位的是1000,以此类推,分子就是小数的小数部分的数字,能化简的一定化成最简分数,如:0.35=35/100=7/20.
百分数化成小数就是把百分数的数字部分小数点向左移动两位,再去掉百分号。如:34.5%=0.345
百分数化成分数就是把百分数看成是分母是100的分数,在化成最简分数。如:25%=25/100=1/4
小数化成百分数就是把小数点向右移动两位,再加上百分号。如:0.238=23.8%
分数化成百分数先把分数转换成小数(除不尽的保留三位小数),再化成百分数。如:3/8=0.375=37.5%
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为两位小数就是百分之几,所以两位小数的部分就是百分之几分子里的整数部分,而百分之几用小数表示,去掉百分号,就要把原来分子部分缩小100倍。分数和百分数怎样互 化。
你是要做小学老师吗?
你是要做小学老师吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一、 教材分析:
1、知识内容:分数与小数的互化
2、教材的地位和作用:
本课教学是学生在学习了分数的加减乘除混合运算后,而对于分数与小数的混合运算该如何做呢?因而必须要全都是小数或全都是分数这样才能进行计算。这节课就在这基础上进行的,目的是使学生掌握分数化成小数的方法以及小数化成分数的方法,也让学生总结并掌握能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。这样就为今后学习分数与小数的混合运算打下良好的基础。在本节课的教学中,体现了数学知识的内在联系,让学生从已有的知识背景出发,通过习题练习、自主探索、合作交流等方式积极探索分数与小数互化的规律。
3、教学目标:
(1)知识目标:①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。
②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。
(2)能力目标:在学生对能化成有限小数的最简分数的过程的参与讨论中培养学生观察、归纳、解决问题的能力。
(3)情感目标:在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。
教学重点:分数与小数互化的方法
教学难点:能化成有限小数的分数的特点。
二、 教学分析:
根据本节教材特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,通过“观图设疑,提出问题,自主探究,总结规律,形成概念,知识运用”等环节,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、教学思路:
1.通过请同学回答说出九大行星如何比较它们的大小来激发学生兴趣,提出数学问题;
2.结合课堂操练,逐步把握知识的本质,形成认知结构,总结规律。
四、教学过程:
一、观图设疑,提出问题
幻灯片显示出九大行星,请学生说出有哪九大行星?并提出:已知水星、冥王星、月球的直径分别是地球直径的 ,问如何比较它们直径的大小并指出哪个行星是最大的,让学生带着这个问题学习新课,这时学生的兴趣已被调动。他们就能积极自主参与知识的发生、发展、形成的过程,带着问题学习新课。
二、出示课题,自主探究
例1把下列分数化成有限小数,如果不能化成有限小数,将其结果保留三位小数。
学生完成后,在视频台上展示部分学生写的作业,然后教师请学生看自己的作业的对错,并纠正。
并提问:(1)把分数化成小数,其结果有几种情况?(启发学生说出有限小数与无限小数)
(2)能化成有限小数的分数有什么特点呢?(学生以小组为单位,讨论并请学生代表回答,教师适时指导。)
三、总结规律、形成概念
通过学生积极讨论,充分调动了学生的积极参与学习,既发挥了学生学习的主动性,又培养了学生的发散性思维,引导学生总结出:有的分数可以化成有限小数,有的分数不可以化成有限小数,请同学们再看一看什么样的分数可以化成有限小数?什么样的分数不可以化成有限小数?启发学生从分母的最小公倍数着手。
最后总结出:一个最简分数,如果分母中只含有素因数2和5,再无其它素因数,那么这个分数就可以化成有限小数,否则就不能化成有限小数。
例题2,请把下列小数化成分数,说说你是怎样把小数化成分数的?
0.06,0.4,1.8,2.45,1.465,
归纳:(学生为主,教师点拨)
1、原来有几位小数,就在1后面写几个零作分母。原来的小数去掉小数点作分子。
2、小数化成分数后,能约分的要约分。常用的因数是2和5。
对于小数如何化成分数的题目,课前了解到学生在小学时已学过把小数如何化成分数的方法,因而以学生练习为主,加以操练并巩固,有错误的及时纠正。
四、学会运用,巩固新知
例题3,将 ,0.54按从小到大的顺序排列.
此题主要考查学生对今天学过的内容如何应用,是把小数化成分数好还是把分数化成小数比较大小好呢?最后回到今天刚开始的问题能解决吗?哪个行星的直径最大?可以通过什么方法知道?鼓励学生用多种方法比较大小,开拓学生的思路。
反馈练习:
1、将下列小数化成分数:0.48、1.05、3.24
2、将下列分数化成小数:(不能化成有限小数的将其保留三位小数)
五、全课小结:
这节课,通过以上环节的教学设计,既遵循了概念教学的规律,又符合六年级学生的认知特点,指导学生观察、引导概括,获取新知;同时注重培养学生的发散性思维。在教学过程中让学生动口、动脑为主的学习方法,使学生学有兴趣、学有所获。
教学设计说明:
本节课主要是让学生理解分数与小数的互化的方法以及总结出能化成有限小数的最简分数的特点。学会分数与小数互化的方法,为以后学习分数与小数的混合运算作准备.本课首先从问有哪九大行星入手并从数据中如何比较它们的大小,引起学生的好奇和注意,并能主动参与学习活动,在活动中发挥自己的主体作用,也有利于激发学生的学习兴趣,让学生积极参与知识的形成过程.在教学中,教师引导学生以分数和小数互化的方法为出发点,调动学过的有关知识,让学生亲自参与分数与小数互化的推理过程,体验数学知识的联系,并在此基础上,通过观察、讨论,从中发现能化成有限小数最简分数的特点的规律,并运用这些知识来解决多个分数与小数的大小比较问题。在学生参与了分数与小数互化的推理过程,掌握了互化的方法后,重点放在总结能化成有限小数的最简分数的特点上,学生通过练习,归纳总结,提高了学生对知识的掌握水平。培养学生的综合能力。
1、知识内容:分数与小数的互化
2、教材的地位和作用:
本课教学是学生在学习了分数的加减乘除混合运算后,而对于分数与小数的混合运算该如何做呢?因而必须要全都是小数或全都是分数这样才能进行计算。这节课就在这基础上进行的,目的是使学生掌握分数化成小数的方法以及小数化成分数的方法,也让学生总结并掌握能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。这样就为今后学习分数与小数的混合运算打下良好的基础。在本节课的教学中,体现了数学知识的内在联系,让学生从已有的知识背景出发,通过习题练习、自主探索、合作交流等方式积极探索分数与小数互化的规律。
3、教学目标:
(1)知识目标:①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。
②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。
(2)能力目标:在学生对能化成有限小数的最简分数的过程的参与讨论中培养学生观察、归纳、解决问题的能力。
(3)情感目标:在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。
教学重点:分数与小数互化的方法
教学难点:能化成有限小数的分数的特点。
二、 教学分析:
根据本节教材特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,通过“观图设疑,提出问题,自主探究,总结规律,形成概念,知识运用”等环节,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、教学思路:
1.通过请同学回答说出九大行星如何比较它们的大小来激发学生兴趣,提出数学问题;
2.结合课堂操练,逐步把握知识的本质,形成认知结构,总结规律。
四、教学过程:
一、观图设疑,提出问题
幻灯片显示出九大行星,请学生说出有哪九大行星?并提出:已知水星、冥王星、月球的直径分别是地球直径的 ,问如何比较它们直径的大小并指出哪个行星是最大的,让学生带着这个问题学习新课,这时学生的兴趣已被调动。他们就能积极自主参与知识的发生、发展、形成的过程,带着问题学习新课。
二、出示课题,自主探究
例1把下列分数化成有限小数,如果不能化成有限小数,将其结果保留三位小数。
学生完成后,在视频台上展示部分学生写的作业,然后教师请学生看自己的作业的对错,并纠正。
并提问:(1)把分数化成小数,其结果有几种情况?(启发学生说出有限小数与无限小数)
(2)能化成有限小数的分数有什么特点呢?(学生以小组为单位,讨论并请学生代表回答,教师适时指导。)
三、总结规律、形成概念
通过学生积极讨论,充分调动了学生的积极参与学习,既发挥了学生学习的主动性,又培养了学生的发散性思维,引导学生总结出:有的分数可以化成有限小数,有的分数不可以化成有限小数,请同学们再看一看什么样的分数可以化成有限小数?什么样的分数不可以化成有限小数?启发学生从分母的最小公倍数着手。
最后总结出:一个最简分数,如果分母中只含有素因数2和5,再无其它素因数,那么这个分数就可以化成有限小数,否则就不能化成有限小数。
例题2,请把下列小数化成分数,说说你是怎样把小数化成分数的?
0.06,0.4,1.8,2.45,1.465,
归纳:(学生为主,教师点拨)
1、原来有几位小数,就在1后面写几个零作分母。原来的小数去掉小数点作分子。
2、小数化成分数后,能约分的要约分。常用的因数是2和5。
对于小数如何化成分数的题目,课前了解到学生在小学时已学过把小数如何化成分数的方法,因而以学生练习为主,加以操练并巩固,有错误的及时纠正。
四、学会运用,巩固新知
例题3,将 ,0.54按从小到大的顺序排列.
此题主要考查学生对今天学过的内容如何应用,是把小数化成分数好还是把分数化成小数比较大小好呢?最后回到今天刚开始的问题能解决吗?哪个行星的直径最大?可以通过什么方法知道?鼓励学生用多种方法比较大小,开拓学生的思路。
反馈练习:
1、将下列小数化成分数:0.48、1.05、3.24
2、将下列分数化成小数:(不能化成有限小数的将其保留三位小数)
五、全课小结:
这节课,通过以上环节的教学设计,既遵循了概念教学的规律,又符合六年级学生的认知特点,指导学生观察、引导概括,获取新知;同时注重培养学生的发散性思维。在教学过程中让学生动口、动脑为主的学习方法,使学生学有兴趣、学有所获。
教学设计说明:
本节课主要是让学生理解分数与小数的互化的方法以及总结出能化成有限小数的最简分数的特点。学会分数与小数互化的方法,为以后学习分数与小数的混合运算作准备.本课首先从问有哪九大行星入手并从数据中如何比较它们的大小,引起学生的好奇和注意,并能主动参与学习活动,在活动中发挥自己的主体作用,也有利于激发学生的学习兴趣,让学生积极参与知识的形成过程.在教学中,教师引导学生以分数和小数互化的方法为出发点,调动学过的有关知识,让学生亲自参与分数与小数互化的推理过程,体验数学知识的联系,并在此基础上,通过观察、讨论,从中发现能化成有限小数最简分数的特点的规律,并运用这些知识来解决多个分数与小数的大小比较问题。在学生参与了分数与小数互化的推理过程,掌握了互化的方法后,重点放在总结能化成有限小数的最简分数的特点上,学生通过练习,归纳总结,提高了学生对知识的掌握水平。培养学生的综合能力。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |