求解答这三道题目 20
1个回答
展开全部
(2) 被积函数化为:x^(1/2-4)=x^(-7/4)
原式=∫x^(-7/4)dx
=1/(-3/4)x^(-3/4)+C
=-4/3x^(-3/4)+C
(4) 被积函数化为:x^(1/2-3)-e^x+1/x=x^(-5/2)-e^x+1/x
原式=∫[x^(-5/2)-e^x+1/x]dx
=1/(-3/2)x^(-3/2)-e^x+lnx+C
=-2/3e^(-3/2)-e^x+lnx+C
(6) 被积函数化为:1+3×2^(-x)e^x
dv=e^xdx v=e^x
u=2^(-x) du=2^(-x)/ln2dx
∫2^(-x)e^xdx=2^(-x)e^x-∫e^x*2^(-x)/ln2dx
(1+1/ln2)∫2^(-x)e^xdx=2^(-x)e^x
∫2^(-x)e^xdx=2^(-x)e^x/(1+1/ln2)
原式=∫[1+3×2^(-x)e^x]dx
=x+3∫2^(-x)e^xdx+C
=x+3×2^(-x)e^x/(1+1/ln2)+C
原式=∫x^(-7/4)dx
=1/(-3/4)x^(-3/4)+C
=-4/3x^(-3/4)+C
(4) 被积函数化为:x^(1/2-3)-e^x+1/x=x^(-5/2)-e^x+1/x
原式=∫[x^(-5/2)-e^x+1/x]dx
=1/(-3/2)x^(-3/2)-e^x+lnx+C
=-2/3e^(-3/2)-e^x+lnx+C
(6) 被积函数化为:1+3×2^(-x)e^x
dv=e^xdx v=e^x
u=2^(-x) du=2^(-x)/ln2dx
∫2^(-x)e^xdx=2^(-x)e^x-∫e^x*2^(-x)/ln2dx
(1+1/ln2)∫2^(-x)e^xdx=2^(-x)e^x
∫2^(-x)e^xdx=2^(-x)e^x/(1+1/ln2)
原式=∫[1+3×2^(-x)e^x]dx
=x+3∫2^(-x)e^xdx+C
=x+3×2^(-x)e^x/(1+1/ln2)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询