什么是十字相乘形法
展开全部
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘的和等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字相乘法能把某些二次三项式分解因式。对于形如ax²+bx+c=(a1x+c1)(a2x+c2)(a不等于零)的整十字相乘法式来说,方法的关键是把二次项系数a分解成a1*a2和a3*a4的积的形式,把常数项c分解成两个因数c1*c2和c3*c4的积的形式,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)乘(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
例如:6x平方+23x+20=0
解:(3x+4)(2x+5)=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |