(tanx)平方的不定积分怎么算

 我来答
老衲今年还年轻
推荐于2019-10-11 · TA获得超过7572个赞
知道答主
回答量:70
采纳率:0%
帮助的人:1.9万
展开全部

计算(tanx)²不定积分的方法:

(tanx)²

=∫[(secx)^2-1]dx

=∫(secx)^2dx-x

=tanx-x+c

拓展资料:

      在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(C为任意常数)叫做函数f(x)的不定积分,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。

由定义可知:求函数f(x)的不定积分,就是要求求出f(x)的所有的原函数,可以由原函数的性质可知,只要求出来函数f(x)的任意一个原函数,然后再加上任意的常数C,就可以得到函数f(x)的不定积分。



浅笑有梨涡
推荐于2019-11-15 · TA获得超过1.1万个赞
知道答主
回答量:20
采纳率:100%
帮助的人:2815
展开全部

原式=S (sin x)^2/(cos x)^2 dx
=S [1-(cos x)^2]/(cos x)^2 dx
=S 1/(cos x)^2 dx - S 1dx

S 1dx = x + C
S 1/(cos x)^2 dx中

令 t=1/cos x

则 dx = (cos x)^2/sin x dt

即 dx = 1/{ t [(t^2 - 1)]^0.5 } dt

∴ S 1/(cos x)^2 dx
= S t^2 /{ t [(t^2 - 1)]^0.5 } dt
= S t /[(t^2 - 1)]^0.5 dt
= 1/2 S 1/[(t^2 - 1)]^0.5 d(t^2)
= (t^2 - 1)^0.5 + C
= [1/(cos x)^2 - 1]^0.5 + C
= tan x + C 

∴S (tan x)^2 dx
= tan x - x + C

拓展资料:

微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

参考资料:百度百科—不定积分

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
塔駡德
高粉答主

推荐于2019-09-13 · 关注我不会让你失望
知道答主
回答量:46
采纳率:0%
帮助的人:1.4万
展开全部

原式=∫[(secx)^2-1]dx==∫(secx)^2dx-∫dx=tanx-x+C。

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(C为任意常数)叫做函数f(x)的不定积分,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。

由定义可知:求函数f(x)的不定积分,就是要求求出f(x)的所有的原函数,可以由原函数的性质可知,只要求出来函数f(x)的任意一个原函数,然后再加上任意的常数C,就可以得到函数f(x)的不定积分。

拓展资料:

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
你的眼神唯美
2020-07-30 · 海离薇:不定积分,求导验证。
你的眼神唯美
采纳数:1541 获赞数:61960

向TA提问 私信TA
展开全部

不定积分结果不唯一求导验证应该能够提高凑微分的计算能力。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友8362f66
2016-03-15 · TA获得超过8.3万个赞
知道大有可为答主
回答量:8690
采纳率:83%
帮助的人:3324万
展开全部
解:∫(tanx)^2dx=∫[(secx)^2-1]dx=∫(secx)^2dx-∫dx=tanx-x+C。供参考。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式