求三道高数的三重积分题答案

1.∫∫∫z^2dV,积分区域是x^2+y^2+z^2≤R^2,x^2+y^2≤Rx2.∫∫∫(x^2+y^2)dV,积分区域由z=√R^2-x^2-y^2,与z=√x^... 1.∫∫∫z^2dV,积分区域是x^2+y^2+z^2≤R^2,x^2+y^2≤Rx
2.∫∫∫(x^2+y^2)dV,积分区域由z=√R^2-x^2-y^2 ,与z=√x^2+y^2组成.
3.∫∫∫ dV/√x^2+y^2+(z-2)^2,积分区域是x^2+y^2+z^2≤1(提示:用球坐标,先对ψ求积.)

高手能将思路和详细过程告诉我么?感激不尽~高数不好,如果是详细简明的答案我会再加分的,谢谢各位~!
谢谢看进来的各位~补充下(我只有结果,不会过程...)第一题答案是2/15R^2(π-16/15),
第二题2/5πR^2(2/3-5√2/12)
第三题2π/3
谢谢KEN-3000,可能还有一部分,我也回去再看看~!
展开
robin_2006
2009-04-03 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8507万
展开全部

看下图

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ken_3000
2009-04-03 · TA获得超过4.1万个赞
知道大有可为答主
回答量:5528
采纳率:0%
帮助的人:6694万
展开全部
1.
用柱坐标做:x=rcosθ,y=rsinθ,z=z,dv=rdrdθdz,
∫∫∫z^2dV=
∫[-π/2,π/2]dθ∫[0,Rcosθ]rdr∫[-√(R^2-r^2),√(R^2-r^2)]z^2dz
=∫[-π/2,π/2]dθ∫[0,Rcosθ]rdr(2/3)*(R^2-r^2)^(3/2)
=∫[-π/2,π/2]dθ(2/15)*R^5*(1-(sinθ)^5)
=2πR^5/15.
我就会第一道
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式