变异指标的简介
总体数量标志值数列中各四分位数离差的平均数。将数列分成四等分,中间形成三个分割点,居于第一分割点的标志值Q1称为第一四分位数,居于第二分割点的标志值Q2即中位数,称为第二四分位数,居于第三分割点的标志值Q3称为第三四分位数。
四分位差能够避免次数分配数列中两端极端数值的影响,中间部分数列分配愈集中,标志值的差异愈小,四分位差也愈小。 总体各单位标志值与平均数离差绝对值的平均数。它表示总体各标志值与平均数的平均差异程度。求平均差所以用离差的绝对值,是因为任何数列各标志值与算术平均数的正负离差之和都等于0,而取绝对值可以不考虑离差的正负号,只考虑离差数大小。以A D表示平均差。
式中x代表标志值,塣代表平均数,n代表总体单位数。
平均差受总体各单位所有标志值的影响,所以更能综合反映总体标志的变异程度,平均差愈小表示标志变异愈小,分布愈集中。
不同总体的平均差计量不同,单位不同,不能直接对比。为了显示平均离差的相对程度,便于不同总体的比较,可以计算平均差系数VAD,它是将平均差除以平均数求得。 总体各单位标志值与平均数离差平方的平均数的平方根,又称均方差。它反映标志值与平均数离差的平均水平,是测定标志变动度最常用的指标。求标准差所以将离差加以平方,是因为可以消除离差的正负号,并将离差程度强化,最后把所得结果开方是为了恢复原来的计量单位。以σ表示标准差。
为便于不同总体的对比,可以计算标准差系数Vσ,以测定标志值的相对变异程度。