二项式定理怎么证明?
展开全部
当n=1时,左边=(a+b)1=a+b
右边=C01a+C11b=a+b;左边=右边
假设当n=k时,等式成立,即(a+b)n=C0nan+C1n
a(n-1)b十…十Crn
a(n-r)br十…十Cnn
bn成立;
则当n=k+1时,
(a+b)(n+1)=(a+b)n*(a+b)=[C0nan+C1n
a(n-1)b十…十Crn
a(n-r)br十…十Cnn
bn]*(a+b)=[C0nan+C1n
a(n-1)b十…十Crn
a(n-r)br十…十Cnn
bn]*a+[C0nan+C1n
a(n-1)b十…十Crn
a(n-r)br十…十Cnn
bn]*b=[C0na(n+1)+C1n
anb十…十Crn
a(n-r+1)br十…十Cnn
abn]+[C0nanb+C1n
a(n-1)b2十…十Crn
a(n-r)b(r+1)十…十Cnn
b(n+1)]=C0na(n+1)+(C0n+C1n)anb十…十(C(r-1)n+Crn)
a(n-r+1)br十…十(C(n-1)n+Cnn)abn+Cnn
b(n+1)]=C0(n+1)a(n+1)+C1(n+1)anb+C2(n+1)a(n-1)b2+…+Cr(n+1)
a(n-r+1)br+…+C(n+1)(n+1)
b(n+1)
∴当n=k+1时,等式也成立;
所以对于任意正整数,等式都成立
右边=C01a+C11b=a+b;左边=右边
假设当n=k时,等式成立,即(a+b)n=C0nan+C1n
a(n-1)b十…十Crn
a(n-r)br十…十Cnn
bn成立;
则当n=k+1时,
(a+b)(n+1)=(a+b)n*(a+b)=[C0nan+C1n
a(n-1)b十…十Crn
a(n-r)br十…十Cnn
bn]*(a+b)=[C0nan+C1n
a(n-1)b十…十Crn
a(n-r)br十…十Cnn
bn]*a+[C0nan+C1n
a(n-1)b十…十Crn
a(n-r)br十…十Cnn
bn]*b=[C0na(n+1)+C1n
anb十…十Crn
a(n-r+1)br十…十Cnn
abn]+[C0nanb+C1n
a(n-1)b2十…十Crn
a(n-r)b(r+1)十…十Cnn
b(n+1)]=C0na(n+1)+(C0n+C1n)anb十…十(C(r-1)n+Crn)
a(n-r+1)br十…十(C(n-1)n+Cnn)abn+Cnn
b(n+1)]=C0(n+1)a(n+1)+C1(n+1)anb+C2(n+1)a(n-1)b2+…+Cr(n+1)
a(n-r+1)br+…+C(n+1)(n+1)
b(n+1)
∴当n=k+1时,等式也成立;
所以对于任意正整数,等式都成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询