数学八年级下册几何证明题。
如图,在△ABC中,点M是BC的中点,AP平分∠BAC,且BP⊥AP,垂足为点P。若AB=10,AC=14,则PM的长为()。...
如图,在△ABC中,点M是BC的中点,AP平分∠BAC,且BP⊥AP,垂足为点P。若AB=10,AC=14,则PM的长为( )。
展开
展开全部
解:
本问题的一般性结论是:PM=(AC-AB)/2
(详细证明在我的空间,虽然是同一问题,但请注意字母的标注是不同的)
本题的最后结果是PM=(14-10)/2=2
http://hi.baidu.com/jswyc/blog/item/d5e9e481b84c0ed09023d970.html
江苏吴云超祝你学习进步
本问题的一般性结论是:PM=(AC-AB)/2
(详细证明在我的空间,虽然是同一问题,但请注意字母的标注是不同的)
本题的最后结果是PM=(14-10)/2=2
http://hi.baidu.com/jswyc/blog/item/d5e9e481b84c0ed09023d970.html
江苏吴云超祝你学习进步
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长BP交AC于D,
因为AP平分∠BAC,且BP⊥AP,
所以AP是等腰三角形ABD底边上的中线,
AB=AD,
CD=AC-AD=14-10=4,
而点M是BC的中点,
所以PM是三角形BCD的中位线,
所以:PB=CD/2=2
因为AP平分∠BAC,且BP⊥AP,
所以AP是等腰三角形ABD底边上的中线,
AB=AD,
CD=AC-AD=14-10=4,
而点M是BC的中点,
所以PM是三角形BCD的中位线,
所以:PB=CD/2=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询