求解,计算定积分,如附图
1个回答
展开全部
令³√x=t,则x=t³
x:-1→1,则t:-1→1
∫[-1:1][(1+⁵√x)/(1+³√x²)]dx
=∫[-1:1][(1/(1+³√x²)]dx +∫[-1:1][(⁵√x)/(1+³√x²)]dx
=2∫[0:1][(1/(1+t²)]d(t³) +0
=2∫[0:1][(3t²/(1+t²)]dt
=2∫[0:1][(3t²+3-3)/(1+t²)]dt
=2∫[0:1][3 -3/(1+t²)]dt
=2(3t -3arctant)|[0:1]
=2·[(3·1-3arctan1)-(3·0-3arctan0)]
=2·(3-¾π-0+0)
=6 -(3/2)π
x:-1→1,则t:-1→1
∫[-1:1][(1+⁵√x)/(1+³√x²)]dx
=∫[-1:1][(1/(1+³√x²)]dx +∫[-1:1][(⁵√x)/(1+³√x²)]dx
=2∫[0:1][(1/(1+t²)]d(t³) +0
=2∫[0:1][(3t²/(1+t²)]dt
=2∫[0:1][(3t²+3-3)/(1+t²)]dt
=2∫[0:1][3 -3/(1+t²)]dt
=2(3t -3arctant)|[0:1]
=2·[(3·1-3arctan1)-(3·0-3arctan0)]
=2·(3-¾π-0+0)
=6 -(3/2)π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询