Y=X^2+1/X^4+1解值域
2个回答
2016-09-22
展开全部
Y=(X^2+1)/(X^4+1)
令t=x²+1≥1
则x²=t-1
y = t / {(t-1)²+1}
= t / {t²-2t+2}
= 1 / {t-2+2/t}
= 1 / {t+2/t-2}
= 1 / {(√t-√2/√t)²+2√2-2}
当t=√2时,分母有最小值2√2-2
即:(√t-√2/√t)²+2√2-2 ≥· 2√2-1
0< 1 / {(√t-√2/√t)²+2√2-2} ≤ 1/(2√2-2)
即:0< 1 / {(√t-√2/√t)²+2√2-2} ≤ (√2+1)/2
即:Y=(X^2+1)/(X^4+1)的值域为:( 0, (√2+1)/2 】
令t=x²+1≥1
则x²=t-1
y = t / {(t-1)²+1}
= t / {t²-2t+2}
= 1 / {t-2+2/t}
= 1 / {t+2/t-2}
= 1 / {(√t-√2/√t)²+2√2-2}
当t=√2时,分母有最小值2√2-2
即:(√t-√2/√t)²+2√2-2 ≥· 2√2-1
0< 1 / {(√t-√2/√t)²+2√2-2} ≤ 1/(2√2-2)
即:0< 1 / {(√t-√2/√t)²+2√2-2} ≤ (√2+1)/2
即:Y=(X^2+1)/(X^4+1)的值域为:( 0, (√2+1)/2 】
展开全部
原题是:Y=(X²+1)/(X^4+1),求值域。
值域C={Y|Y=(X²+1)/(X^4+1)}
={Y|Y=u/(u-1)²+1),u≥1} (设u=X²+1)
={Y|Y=1/(u+(2/u)-2),u≥1}
={Y|Y=1/t,t≥-2+2√2} (设t=u+(2/u)-2)
={Y|0<Y≤1/(-2+2√2)}
={Y|0<Y≤(2+√2)/2}
所以Y=(X²+1)/(X^4+1)的值域是(0,(2+√2)/2]
希望能帮到你!
值域C={Y|Y=(X²+1)/(X^4+1)}
={Y|Y=u/(u-1)²+1),u≥1} (设u=X²+1)
={Y|Y=1/(u+(2/u)-2),u≥1}
={Y|Y=1/t,t≥-2+2√2} (设t=u+(2/u)-2)
={Y|0<Y≤1/(-2+2√2)}
={Y|0<Y≤(2+√2)/2}
所以Y=(X²+1)/(X^4+1)的值域是(0,(2+√2)/2]
希望能帮到你!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询