2个回答
展开全部
d/dx∫(0->x) tf(t^2-x^2)dt
=d/dx [ (1/2)∫(0->x) f(t^2-x^2)d(t^2-x^2)]
设
y = t^2-x^2
t=0, y =-x^2
t=x, y=0
d/dx [ (1/2)∫(0->x) f(t^2-x^2)d(t^2-x^2)]
=d/dx [ (1/2)∫(-x^2->0) f(y)dy ]
=d/dy[ (1/2)∫(-x^2->0) f(y)dy ] /(dy/dx)
= x (dx/dy) f(-x^2) / (dy/dx)
= xf(-x^2)
=d/dx [ (1/2)∫(0->x) f(t^2-x^2)d(t^2-x^2)]
设
y = t^2-x^2
t=0, y =-x^2
t=x, y=0
d/dx [ (1/2)∫(0->x) f(t^2-x^2)d(t^2-x^2)]
=d/dx [ (1/2)∫(-x^2->0) f(y)dy ]
=d/dy[ (1/2)∫(-x^2->0) f(y)dy ] /(dy/dx)
= x (dx/dy) f(-x^2) / (dy/dx)
= xf(-x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询