专业英语
Theionicconductivityofapolymerelectrolytedependsontheconcentrationoftheconductingspec...
The ionic conductivity of a polymer electrolyte depends on the concentration of the conducting species and their mobility. The low ionic conductivity in a polymer complex resulting from the crystalline phase that affects the mobility of ions could be overcome by blending, plasticizing, etc. In this work, blended polymer electrolytes with polymersPVC, PEG, and inorganic salt LiClO4 with different concentrations of ceramic filler (TiO2) were prepared. The weight ratios between PVC:PEG:LiClO4 were kept constant throughout, and the wt.% of TiO2 was varied (0, 5, 10,15, 20). The polymer films so obtained were flexible, opaque, and free standing.The ionic conductivity measurements have been carried out on these polymer electrolytes by employing variable frequency complex AC impedance technique (LCZ 3330 meter, Keithley, USA, in the frequency range 40–100 kHz).The thin films of the polymer complex were sandwiched between the two stainless steel electrodes attached to the conductivity jig specially designed for the ionic conductivity measurements. The two SS electrodes act as blocking electrodes for Li+ ions under an applied electric field.The conductivity values of the polymer complexes were calculated (using the formula σ=l/RbA) from the bulk resistance obtained from the intercepts of the Cole–Cole plot and are tabulated (Table 1). The polymer electrolytes
were also subjected to conductivity studies in the temperature range (300–373 K). The graphical plotting of the variation of Z′ and Z〃 for the polymer compositions are shown in Fig. 3. Figure 4 depicts the Arrhenius plot of conductivity in PVC–PEG–LiClO4 polymer electrolyte in the form of thin films. The non-linearity in Fig. 4 indicates that ion transport in polymer electrolytes is dependent on polymer segmental motion.Thus, the result may be described by the VTF relation, which describes the transport properties in a viscous matrix. It is also observed that as temperature increases, the conductivity values also increase for all the compositions. At high temperature, thermal movement of polymer chain segments, and the dissociation of salts are improved, thereby increasing ionic conductivity. However, at low temperature, the presence of lithium salt leads to salt–polymer or cation–dipole interaction, which increases the cohesive energy of polymer networks. 展开
were also subjected to conductivity studies in the temperature range (300–373 K). The graphical plotting of the variation of Z′ and Z〃 for the polymer compositions are shown in Fig. 3. Figure 4 depicts the Arrhenius plot of conductivity in PVC–PEG–LiClO4 polymer electrolyte in the form of thin films. The non-linearity in Fig. 4 indicates that ion transport in polymer electrolytes is dependent on polymer segmental motion.Thus, the result may be described by the VTF relation, which describes the transport properties in a viscous matrix. It is also observed that as temperature increases, the conductivity values also increase for all the compositions. At high temperature, thermal movement of polymer chain segments, and the dissociation of salts are improved, thereby increasing ionic conductivity. However, at low temperature, the presence of lithium salt leads to salt–polymer or cation–dipole interaction, which increases the cohesive energy of polymer networks. 展开
7个回答
展开全部
以下翻译请楼主费心审阅。
The ionic conductivity of a polymer electrolyte depends on the concentration of the conducting species and their mobility. 聚合物电解质的离子电导率取决于导电物质的浓度和它们的迁移性。The low ionic conductivity in a polymer complex resulting from the crystalline phase that affects the mobility of ions could be overcome by blending, plasticizing, etc. 在一种由结晶相(这会影响离子的迁移性)产生的聚合物复合材料中的低离子电导率可以通过共混和增塑等方法来克服。In this work, blended polymer electrolytes with polymers PVC, PEG, and inorganic salt LiClO4 with different concentrations of ceramic filler (TiO2) were prepared.在本研究中, 我们用聚合物PVC(聚氯乙烯)、PEG(聚乙二醇)和无机盐LiClO4,以不同浓度陶瓷填充剂(TiO2)制备了共混的聚合物电解质。The weight ratios between PVC:PEG:LiClO4 were kept constant throughout, and the wt.% of TiO2 was varied (0, 5, 10,15, 20). PVC:PEG:LiClO4 之间的重量比始终保持不变,而TiO2的wt%(质量分数)则是变化的(0,5,10,15,20)。The polymer films so obtained were flexible, opaque, and free standing. 这样获得的聚合物薄膜是柔软而不透明的,而且是自支撑的。The ionic conductivity measurements have been carried out on these polymer electrolytes by employing variable frequency complex AC impedance technique (LCZ 3330 meter, Keithley, USA, in the frequency range 40–100 kHz).对这些聚合物电解质已进行了离子电导率的测量,采用的是可变频率复合交流阻抗技术(LCZ 3330仪表,美国Keithley公司,频率范围40-100kHz)。The thin films of the polymer complex were sandwiched between the two stainless steel electrodes attached to the conductivity jig specially designed for the ionic conductivity measurements. 这种聚合物复合材料的薄膜相三明治一样夹在两个不锈钢电极之间,不锈钢电极附着于专门设计用于离子电导率测量的电导率夹紧装置。The two SS electrodes act as blocking electrodes for Li+ ions under an applied electric field.这两个不锈钢电极的作用是在一个施加的电场下作为锂离子的阻塞电极。The conductivity values of the polymer complexes were calculated (using the formula σ=l/RbA) from the bulk resistance obtained from the intercepts of the Cole–Cole plot and are tabulated (Table 1). 这种聚合物复合材料的电导率数值由体电阻计算(用公式σ=l/RbA ),体电阻则由阻抗圆图的截距获得,电导率数值被列于表1中。The polymer electrolytes were also subjected to conductivity studies in the temperature range (300–373 K). The graphical plotting of the variation of Z′ and Z〃 for the polymer compositions are shown in Fig. 3. 该聚合物电解质还受到了(300-373K)温度范围的电导率研究。关于聚合物组分的Z′ and Z〃变化的图形绘制示于图3。Figure 4 depicts the Arrhenius plot of conductivity in PVC–PEG–LiClO4 polymer electrolyte in the form of thin films. 图4描绘了薄膜形式的PVC–PEG–LiClO4 聚合物电解质电导率的阿累尼乌斯图。The non-linearity in Fig. 4 indicates that ion transport in polymer electrolytes is dependent on polymer segmental motion.图4中的非线性现象表明, 在聚合物电解质中的离子输运取决于聚合物的链段运动。Thus, the result may be described by the VTF relation, which describes the transport properties in a viscous matrix.因此,其结果可以用VTF(Vogel-Tamman-Fulcher)关系来描述, 这一关系可以描述一种粘性母料中的输运性质。 It is also observed that as temperature increases, the conductivity values also increase for all the compositions. 我们还观察到,随着温度的升高,所有组分的电导率值也增加。At high temperature, thermal movement of polymer chain segments, and the dissociation of salts are improved, thereby increasing ionic conductivity. 在高温下,聚合物链段的热运动,以及盐的离解得到改善,从而使离子电导率提高。However, at low temperature, the presence of lithium salt leads to salt–polymer or cation–dipole interaction, which increases the cohesive energy of polymer networks. 可是在低温下,锂盐的存在导致了盐-聚合物或阳离子-偶极子的相互作用,这提高了聚合物网络的结合能。
The ionic conductivity of a polymer electrolyte depends on the concentration of the conducting species and their mobility. 聚合物电解质的离子电导率取决于导电物质的浓度和它们的迁移性。The low ionic conductivity in a polymer complex resulting from the crystalline phase that affects the mobility of ions could be overcome by blending, plasticizing, etc. 在一种由结晶相(这会影响离子的迁移性)产生的聚合物复合材料中的低离子电导率可以通过共混和增塑等方法来克服。In this work, blended polymer electrolytes with polymers PVC, PEG, and inorganic salt LiClO4 with different concentrations of ceramic filler (TiO2) were prepared.在本研究中, 我们用聚合物PVC(聚氯乙烯)、PEG(聚乙二醇)和无机盐LiClO4,以不同浓度陶瓷填充剂(TiO2)制备了共混的聚合物电解质。The weight ratios between PVC:PEG:LiClO4 were kept constant throughout, and the wt.% of TiO2 was varied (0, 5, 10,15, 20). PVC:PEG:LiClO4 之间的重量比始终保持不变,而TiO2的wt%(质量分数)则是变化的(0,5,10,15,20)。The polymer films so obtained were flexible, opaque, and free standing. 这样获得的聚合物薄膜是柔软而不透明的,而且是自支撑的。The ionic conductivity measurements have been carried out on these polymer electrolytes by employing variable frequency complex AC impedance technique (LCZ 3330 meter, Keithley, USA, in the frequency range 40–100 kHz).对这些聚合物电解质已进行了离子电导率的测量,采用的是可变频率复合交流阻抗技术(LCZ 3330仪表,美国Keithley公司,频率范围40-100kHz)。The thin films of the polymer complex were sandwiched between the two stainless steel electrodes attached to the conductivity jig specially designed for the ionic conductivity measurements. 这种聚合物复合材料的薄膜相三明治一样夹在两个不锈钢电极之间,不锈钢电极附着于专门设计用于离子电导率测量的电导率夹紧装置。The two SS electrodes act as blocking electrodes for Li+ ions under an applied electric field.这两个不锈钢电极的作用是在一个施加的电场下作为锂离子的阻塞电极。The conductivity values of the polymer complexes were calculated (using the formula σ=l/RbA) from the bulk resistance obtained from the intercepts of the Cole–Cole plot and are tabulated (Table 1). 这种聚合物复合材料的电导率数值由体电阻计算(用公式σ=l/RbA ),体电阻则由阻抗圆图的截距获得,电导率数值被列于表1中。The polymer electrolytes were also subjected to conductivity studies in the temperature range (300–373 K). The graphical plotting of the variation of Z′ and Z〃 for the polymer compositions are shown in Fig. 3. 该聚合物电解质还受到了(300-373K)温度范围的电导率研究。关于聚合物组分的Z′ and Z〃变化的图形绘制示于图3。Figure 4 depicts the Arrhenius plot of conductivity in PVC–PEG–LiClO4 polymer electrolyte in the form of thin films. 图4描绘了薄膜形式的PVC–PEG–LiClO4 聚合物电解质电导率的阿累尼乌斯图。The non-linearity in Fig. 4 indicates that ion transport in polymer electrolytes is dependent on polymer segmental motion.图4中的非线性现象表明, 在聚合物电解质中的离子输运取决于聚合物的链段运动。Thus, the result may be described by the VTF relation, which describes the transport properties in a viscous matrix.因此,其结果可以用VTF(Vogel-Tamman-Fulcher)关系来描述, 这一关系可以描述一种粘性母料中的输运性质。 It is also observed that as temperature increases, the conductivity values also increase for all the compositions. 我们还观察到,随着温度的升高,所有组分的电导率值也增加。At high temperature, thermal movement of polymer chain segments, and the dissociation of salts are improved, thereby increasing ionic conductivity. 在高温下,聚合物链段的热运动,以及盐的离解得到改善,从而使离子电导率提高。However, at low temperature, the presence of lithium salt leads to salt–polymer or cation–dipole interaction, which increases the cohesive energy of polymer networks. 可是在低温下,锂盐的存在导致了盐-聚合物或阳离子-偶极子的相互作用,这提高了聚合物网络的结合能。
展开全部
聚合物电解质的离子导电性能取决于导电物质的浓度及其迁移能力。复合聚合物的离子导电性能较低,是因为影响离子迁移能力的晶体相可以通过混合、塑化等方式被抑制。本研究将PVC、PEG和无机盐LiClO4以不同浓度的陶瓷填料(TiO2)混合,制备复合聚合物电解质。保持PVC、PEG、LiClO4的质量比恒定,采用不同质量百分数(0,5,10,15,20)的TiO2。此法制得的聚合物膜弹性高,绝缘好,独立性强。 利用变频复合交流阻抗法(LCZ 3330仪、Keithley、美国、频率范围40 - 100khz),测量离子电导率。专为测量离子电导率的夹具连有两个不锈钢电极,用以夹住复合聚合物薄膜。这两个SS电极在所用电场中,用作Li+的封闭电极。复合聚合物的电导率通过体积电阻计算(公式σ= l / RbA),
我刚翻译一半,就看到楼上的翻译了,就此罢手。楼上的翻译很好很强大。
我刚翻译一半,就看到楼上的翻译了,就此罢手。楼上的翻译很好很强大。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
希望能帮到你:
离子导电的聚合物电解质取决于浓度进行物种及其流动。低离子导电聚合物复杂所造成的晶相的影响离子的流动性是可以克服的混合,塑化等在这项工作中,混合型聚合物电解质与polymersPVC ,聚乙二醇,和无机盐LiClO4用不同浓度的陶瓷灌装机(二氧化钛)的准备。之间的重量比聚氯乙烯:聚乙二醇: LiClO4保持恒定,与野生型。 %的二氧化钛是不同的( 0 , 5 , 10,15 , 20 ) 。该聚合物膜,以便获得是灵活的,不透明的,并免费standing.The离子导电性进行了测量这些聚合物电解质采用变频复杂的交流阻抗技术( LCZ三千三百三米,吉时利,美国,在频率范围40-100千赫) 。薄膜聚合物复合夹心两国不锈钢电极附在电导率夹具专为电导率测量。两个不锈钢电极作为阻止电极锂离子电根据应用电导率值场的聚合物复合计算(利用公式σ = 1 /非洲)由大量抵抗从截获的科尔,科尔的阴谋和列(表1 ) 。
该聚合物电解质还遭到电导率研究的温度范围内( 300-373 k )段。绘制的图形变化的Z '和Z 〃组成的聚合物中显示图。 3 。图4描述了阿伦纽斯阴谋电导率在PVC -聚乙二醇LiClO4聚合物电解质形式的薄膜。非线性中图。 4表明,离子转运在聚合物电解质取决于聚合物节段性motion.Thus ,其结果可能是所描述的排雷基金的关系,这说明了运输性质的粘性矩阵。还观察到,随着温度升高,电导率值也增加的所有成分。在高温下,热运动的高分子链段和盐分离得到改善,从而提高离子电导率。但是,在低温下,存在的锂盐导致盐聚合物或阳离子偶极相互作用,增加了凝聚力的能量聚合物网络。
离子导电的聚合物电解质取决于浓度进行物种及其流动。低离子导电聚合物复杂所造成的晶相的影响离子的流动性是可以克服的混合,塑化等在这项工作中,混合型聚合物电解质与polymersPVC ,聚乙二醇,和无机盐LiClO4用不同浓度的陶瓷灌装机(二氧化钛)的准备。之间的重量比聚氯乙烯:聚乙二醇: LiClO4保持恒定,与野生型。 %的二氧化钛是不同的( 0 , 5 , 10,15 , 20 ) 。该聚合物膜,以便获得是灵活的,不透明的,并免费standing.The离子导电性进行了测量这些聚合物电解质采用变频复杂的交流阻抗技术( LCZ三千三百三米,吉时利,美国,在频率范围40-100千赫) 。薄膜聚合物复合夹心两国不锈钢电极附在电导率夹具专为电导率测量。两个不锈钢电极作为阻止电极锂离子电根据应用电导率值场的聚合物复合计算(利用公式σ = 1 /非洲)由大量抵抗从截获的科尔,科尔的阴谋和列(表1 ) 。
该聚合物电解质还遭到电导率研究的温度范围内( 300-373 k )段。绘制的图形变化的Z '和Z 〃组成的聚合物中显示图。 3 。图4描述了阿伦纽斯阴谋电导率在PVC -聚乙二醇LiClO4聚合物电解质形式的薄膜。非线性中图。 4表明,离子转运在聚合物电解质取决于聚合物节段性motion.Thus ,其结果可能是所描述的排雷基金的关系,这说明了运输性质的粘性矩阵。还观察到,随着温度升高,电导率值也增加的所有成分。在高温下,热运动的高分子链段和盐分离得到改善,从而提高离子电导率。但是,在低温下,存在的锂盐导致盐聚合物或阳离子偶极相互作用,增加了凝聚力的能量聚合物网络。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼主,我来介绍一个在线翻译网站·
http://www.worldlingo.com/en/products_services/worldlingo_translator.html
用了好几年了,翻译有些不当的地方,但总体还可以!
参考参考吧!
楼上的翻译还可以。
http://www.worldlingo.com/en/products_services/worldlingo_translator.html
用了好几年了,翻译有些不当的地方,但总体还可以!
参考参考吧!
楼上的翻译还可以。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
离子导电聚合物电解质的依赖的浓度和机动性。进行物种在一个较低的离子电导率。对性能较好的聚合物复合而造成的影响结晶阶段的离子迁移可以克服塑化混,等等。在这部作品中,混聚合物电解质与polymersPVC、钉子、和无机盐LiClO4以不同浓度的陶瓷填料(二氧化钛)。重量比PVC:汇率:LiClO4之间始终不变的情况下进行的,wt.二氧化钛是多样的(0)、(五)、10,15、20)。聚合物膜进行了比较灵活,所以不透明的、独立的. 测量的离子电导率进行这些聚合物电解质利用变频复杂的交流阻抗法(LCZ 3330仪、吉时利、美国、频率40 - 100khz),薄膜的聚合物复合被夹在两个人之间的不锈钢焊条附有电导率夹具,专为离子电导率的测量方法。这两个学生电极作为阻断电极李+离子在电场电导率值的计算了聚合物复合体(公式σ= l / RbA)从体积电阻中获得的Cole-Cole截获并表情节(表1)。聚合物电解质
也受导学的温度范围内(300 - 373 K)。图形绘制的变化的Z轴和Z〃′对聚合物作品都显示在图3。图4描绘的阿伦尼斯阴谋在PVC-PEG-LiClO4导电聚合物电解质的薄膜。非线性,如图4表明离子聚合物电解质运输是依赖于聚合物节段性运动。因此,其结果可能是VTF关系描述,并给出了在粘性矩阵的性质。它也观察到作为温度的升高,也增加了电导率值为所有的曲子。在高温、热运动的聚合物链段,和分离的改进,从而提高盐离子电导率。然而,在较低的温度,在场的锂盐导致salt-polymer或cation-dipole互动,提高能源的聚合体网络的凝聚力。
也受导学的温度范围内(300 - 373 K)。图形绘制的变化的Z轴和Z〃′对聚合物作品都显示在图3。图4描绘的阿伦尼斯阴谋在PVC-PEG-LiClO4导电聚合物电解质的薄膜。非线性,如图4表明离子聚合物电解质运输是依赖于聚合物节段性运动。因此,其结果可能是VTF关系描述,并给出了在粘性矩阵的性质。它也观察到作为温度的升高,也增加了电导率值为所有的曲子。在高温、热运动的聚合物链段,和分离的改进,从而提高盐离子电导率。然而,在较低的温度,在场的锂盐导致salt-polymer或cation-dipole互动,提高能源的聚合体网络的凝聚力。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Good god!!I'm going to die
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询