高一数学,数列求和问题,,
3个回答
展开全部
An = (n-1)(n+1)/[2*(n-1/2)*2*(n+1/2)]
= 1/4 * (n²-1)/(n² - 1/4)
= 1/4 * [(n²-1/4)-3/4]/(n² - 1/4)
= 1/4 [1 - (3/4)/(n² -1/4)]
= 1/4 - 3/16 * 1/[(n-1/2)(n+1/2)]
= 1/4 - 3/16 * [(n+1/2)-(n-1/2)]/[(n-1/2)(n+1/2)]
= 1/4 - 3/16 * [1/(n-1/2) - 1/(n+1/2)]
= 1/4 - 3/16 * [2/(2n-1) - 2/(2n+1)]
所以,前 n 项的和为:
S = n/4 - 3/16 * [(2/1 - 2/3) + (2/3 - 2/5) + (2/5 - 2/7) + …… + 2/(2n-1) - 2/(2n+1)]
= n/4 - 3/16 * [2/1 - 2/(2n+1)]
= n/4 - 3/16 * 2 * [1- 1/(2n+1)]
= n/4 - 3/8 * [(2n+1) - 1]/(2n+1)
= n/4 - 3/8 * (2n)/(2n+1)
= n/4 - 3/4 * n/(2n+1)
= n/4 * [1 - 3/(2n+1)]
= n/4 * [(2n+1) - 3]/(2n+1)
= n/4 * (2n-2)/(2n+1)
= n/2 * (n-1)/(2n+1)
= n(n-1)/(4n+2)
= 1/4 * (n²-1)/(n² - 1/4)
= 1/4 * [(n²-1/4)-3/4]/(n² - 1/4)
= 1/4 [1 - (3/4)/(n² -1/4)]
= 1/4 - 3/16 * 1/[(n-1/2)(n+1/2)]
= 1/4 - 3/16 * [(n+1/2)-(n-1/2)]/[(n-1/2)(n+1/2)]
= 1/4 - 3/16 * [1/(n-1/2) - 1/(n+1/2)]
= 1/4 - 3/16 * [2/(2n-1) - 2/(2n+1)]
所以,前 n 项的和为:
S = n/4 - 3/16 * [(2/1 - 2/3) + (2/3 - 2/5) + (2/5 - 2/7) + …… + 2/(2n-1) - 2/(2n+1)]
= n/4 - 3/16 * [2/1 - 2/(2n+1)]
= n/4 - 3/16 * 2 * [1- 1/(2n+1)]
= n/4 - 3/8 * [(2n+1) - 1]/(2n+1)
= n/4 - 3/8 * (2n)/(2n+1)
= n/4 - 3/4 * n/(2n+1)
= n/4 * [1 - 3/(2n+1)]
= n/4 * [(2n+1) - 3]/(2n+1)
= n/4 * (2n-2)/(2n+1)
= n/2 * (n-1)/(2n+1)
= n(n-1)/(4n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询