高等数学:麻烦写下过程。
1个回答
2017-10-26
展开全部
题目意思就是证明,当X≥0时,f(x)=∫(0到x)(t-t^2)(sint)^(2n)dt的最大值不超过1/((2n+2)(2n+3))因为f'(x)=(x-x^2)(sinx)^(2n)=x(1-x)(sinx)^(2n),在[0,1]大于0,[1,正无穷)上小于0由此知道f(x)在[0,1]上递增,在[1,正无穷)上递减,f(1)是最大值,因此只需证明f(1)=∫(0到1)(t-t^2)(sint)^(2n)dt<1/(2n+2)(2n+3)=1/(2n+2)-1/(2n+3).由于0<=|sint|<=t,因此(t-t^2)(sint)^(2n)<=t^(2n+1)-t^(2n+2),
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询