=∫4(x-2)/(4x²+4x+2)²dx
=∫(2x+1-5)/((2x+1)²+1)²d(2x+1)
(前积分令u=2x+1,后积分令tant=2x+1)
=∫u/(u²+1)²du-5∫1/(tan²t+1)²dtant
=1/2∫1/(u²+1)²d(u²+1)-5∫cos²tdt
=-1/2(u²+1)-5/2∫(cos2t+1)dt
=-1/4(2x²+2x+1)-(5/4)sin2t-(5t/2)
而后代入sin2t=2tant/sec²t=2tant/(tan²t+1)
t=arctan(2x+1)