求微分方程的一条积分曲线,如图
展开全部
求微分方程 y''+y=e^x的一条积分曲线,使其在点(0,1)与直线y=(1/2)x+1相切。
解:齐次方程y''+y=0的特征方程 r²+1=0的根r₁=-i,r₂=i;故齐次方程的通解为:
y=c₁cosx+c₂sinx............①
设原方程的一个特解y*=ae^x;y*'=ae^x;y*''=ae^x;代入原式得:
ae^x+ae^x=2ae^x=e^x,故a=1/2;即原方程的通解为:
y=c₁cosx+c₂sinx+(1/2)e^x...........②
积分曲线②过(0,1);故c₁+(1/2)=1,即c₁=1/2;
又y'=-c₁sinx+c₂cosx+(1/2)e^x.........③
已知y'(0)=1/2,代入③式得:c₂+1/2=1/2,故C₂=0;
将c₁,c₂的值代入②式,即得满足要求的积分曲线为:y=(1/2)cosx+(1/2)e^x;
解:齐次方程y''+y=0的特征方程 r²+1=0的根r₁=-i,r₂=i;故齐次方程的通解为:
y=c₁cosx+c₂sinx............①
设原方程的一个特解y*=ae^x;y*'=ae^x;y*''=ae^x;代入原式得:
ae^x+ae^x=2ae^x=e^x,故a=1/2;即原方程的通解为:
y=c₁cosx+c₂sinx+(1/2)e^x...........②
积分曲线②过(0,1);故c₁+(1/2)=1,即c₁=1/2;
又y'=-c₁sinx+c₂cosx+(1/2)e^x.........③
已知y'(0)=1/2,代入③式得:c₂+1/2=1/2,故C₂=0;
将c₁,c₂的值代入②式,即得满足要求的积分曲线为:y=(1/2)cosx+(1/2)e^x;
系科仪器
2024-08-02 广告
2024-08-02 广告
椭偏仪建模过程涉及光学测量与物理建模的结合。首先,通过椭偏仪收集材料表面反射光的偏振态变化数据。随后,利用这些数据,结合菲涅耳反射系数等理论,进行物理建模。建模过程中需调整材料的光学色散参数与薄膜的3D结构参数,以反向拟合出材料的实际光学特...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |