如何让学生理解算理,构建算法’
1个回答
展开全部
在教学中如何培养学生的运算能力?处理好算理与算法的关系对于突出计算教学核心,抓住计算教学关键具有重要的作用。
何为算理?顾名思义,算理就是计算过程中的道理,是指计算过程中的思维方式,解决为什么这样算的问题。而算法就是计算的方法,主要是指计算的法则,就是简约了复杂的思维过程,添加了人为规定后的程式化的操作步骤,解决如何算得方便、准确的问题。算理是客观存在的规律,算法是人为规定的操作方法;算理为计算提供了正确的思维方式,保证了计算的合理性和正确性,算法为计算提供了快捷的操作方法,提高了计算的速度;算理是算法的理论依据,算法是算理的提炼和概括,算法必须以算理为前提,算理必须经过算法实现优化,它们是相辅相成的。
在小学数学计算教学中,我们要引导学生对计算的道理进行深入的研究,帮助学生应用已有的知识领悟计算的道理。学生只有理解了计算的道理,才能“创造”出计算的方法,才能理解和掌握计算方法,才能正确迅速地计算。
这里我以人教版五年级上册《一个数除以小数》一课来谈谈怎样在计算教学中实现“算法”与“算理”的有效结合。
一:找准新旧知识的切入点——找到算理的源头活水
教学中既要重视法则的教学,还要使学生理解法则背后的道理,使学生不仅知其然,而且还知其所以然,在理解算理的基础上掌握运算法则。而找准新旧知识的切入点就是找到了走进新知的桥梁,更找到了新知所含算理的源头活水。在教学设计中我们要遵循这一教学规律,去了解内容前后的联系,了解学生的思维水平,学情分析是教学设计系统中“影响学习系统最终设计”的重要因素之一。找准了新旧知识的切入点就像敲开了学生学习新知的思维大门,这样才能轻松地完成学生对新知的建构过程,达到教学最终的彼岸。
【课例】
“一个数除以小数”这部分知识是小数除法的重点,它的关键点在于运用商不变性质的原理,将除数是小数的除法转化成除数是整数的除法,然后再按照除数是整数的小数除法的方法来计算。其中“商不变性质”和“除数是整数的小数除法的计算方法”就是这节课新旧知识的连接点。所以在教学的第一个环节,我与学生共同复习了这两方面的知识,为学生学习新知做好了准备。
从复习中,及时了解学生的思维水平,唤起学生的旧知,让学生重新回顾所需的旧知识,给学生的思维搭上一座连接新知的桥梁,让学生找到算理的源头活水。
二:抓住操作与算理的融合点——感知算法的建构过程
我们知道计算是枯燥的,如果没有一定的运算原理做支撑,法则的框架最终会支离破碎。所以在计算教学中我们不仅要让学生知道该怎么计算,而且还应该让学生明白为什么要这样计算,帮助学生在心中了解算法的理论依据,并将“算理”与“算法”有效结合、紧密联系。如何做到这样完美的效果呢?心理学研究表明,儿童的认识规律是“感知——表象——概括”,只有在真真切切的动手操作中慢慢感知、逐步体验才更能符合孩子们的这一认知规律。动手操作可以充分调动学生的各种感官,并使这些感官参与到数学教学活动中去,在操作中感知大量直观形象的事物,获得感性知识,形成知识的表象,并诱发学生积极探索,从事物的表象中概括出事物的本质特征,从而形成科学的概念。《一个数除以小数》这节课在探究计算方法的过程中,先放手让学生自己尝试计算,关注学生的思维动向。给学生充分表达想法的空间。在学生都有自己的想法的基础上,组织学生再次进行讨论,让学生在相互启发、相互影响下初步获得一个数除以小数的计算方法。让学生在操作中发现计算的规律,感悟算理。实现“算理”与“算法”完美结合。
何为算理?顾名思义,算理就是计算过程中的道理,是指计算过程中的思维方式,解决为什么这样算的问题。而算法就是计算的方法,主要是指计算的法则,就是简约了复杂的思维过程,添加了人为规定后的程式化的操作步骤,解决如何算得方便、准确的问题。算理是客观存在的规律,算法是人为规定的操作方法;算理为计算提供了正确的思维方式,保证了计算的合理性和正确性,算法为计算提供了快捷的操作方法,提高了计算的速度;算理是算法的理论依据,算法是算理的提炼和概括,算法必须以算理为前提,算理必须经过算法实现优化,它们是相辅相成的。
在小学数学计算教学中,我们要引导学生对计算的道理进行深入的研究,帮助学生应用已有的知识领悟计算的道理。学生只有理解了计算的道理,才能“创造”出计算的方法,才能理解和掌握计算方法,才能正确迅速地计算。
这里我以人教版五年级上册《一个数除以小数》一课来谈谈怎样在计算教学中实现“算法”与“算理”的有效结合。
一:找准新旧知识的切入点——找到算理的源头活水
教学中既要重视法则的教学,还要使学生理解法则背后的道理,使学生不仅知其然,而且还知其所以然,在理解算理的基础上掌握运算法则。而找准新旧知识的切入点就是找到了走进新知的桥梁,更找到了新知所含算理的源头活水。在教学设计中我们要遵循这一教学规律,去了解内容前后的联系,了解学生的思维水平,学情分析是教学设计系统中“影响学习系统最终设计”的重要因素之一。找准了新旧知识的切入点就像敲开了学生学习新知的思维大门,这样才能轻松地完成学生对新知的建构过程,达到教学最终的彼岸。
【课例】
“一个数除以小数”这部分知识是小数除法的重点,它的关键点在于运用商不变性质的原理,将除数是小数的除法转化成除数是整数的除法,然后再按照除数是整数的小数除法的方法来计算。其中“商不变性质”和“除数是整数的小数除法的计算方法”就是这节课新旧知识的连接点。所以在教学的第一个环节,我与学生共同复习了这两方面的知识,为学生学习新知做好了准备。
从复习中,及时了解学生的思维水平,唤起学生的旧知,让学生重新回顾所需的旧知识,给学生的思维搭上一座连接新知的桥梁,让学生找到算理的源头活水。
二:抓住操作与算理的融合点——感知算法的建构过程
我们知道计算是枯燥的,如果没有一定的运算原理做支撑,法则的框架最终会支离破碎。所以在计算教学中我们不仅要让学生知道该怎么计算,而且还应该让学生明白为什么要这样计算,帮助学生在心中了解算法的理论依据,并将“算理”与“算法”有效结合、紧密联系。如何做到这样完美的效果呢?心理学研究表明,儿童的认识规律是“感知——表象——概括”,只有在真真切切的动手操作中慢慢感知、逐步体验才更能符合孩子们的这一认知规律。动手操作可以充分调动学生的各种感官,并使这些感官参与到数学教学活动中去,在操作中感知大量直观形象的事物,获得感性知识,形成知识的表象,并诱发学生积极探索,从事物的表象中概括出事物的本质特征,从而形成科学的概念。《一个数除以小数》这节课在探究计算方法的过程中,先放手让学生自己尝试计算,关注学生的思维动向。给学生充分表达想法的空间。在学生都有自己的想法的基础上,组织学生再次进行讨论,让学生在相互启发、相互影响下初步获得一个数除以小数的计算方法。让学生在操作中发现计算的规律,感悟算理。实现“算理”与“算法”完美结合。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询