讨论f在点(0,0)的连续性,偏导数,全微分
展开全部
证明:
lim(x,y→0)f(x,y)
=lim(x,y→0) x²y/(x^4+y²)
令:y=kx²,则:
x²y/(x^4+y²)
=k/(1+k²)
显然,极限值与k的取值有关,根据极限唯一性,原极限不存在!
∴
该函数在(0,0)不连续!
f'x(0,0)
=lim(Δx→0)[f(Δx,0)-f(0,0)]/Δx
=lim(Δx→0) 0/Δx
=0
f'y(0,0)
=lim(Δy→0)[f(0,Δy)-f(0,0)]/Δy
=lim(Δx→0) 0/Δy
=0
Δf=f(Δx,Δy)-0=o(ρ),其中ρ=√(Δx²+Δy²)
lim(Δx,Δy→0) o(ρ)/ρ
=lim(Δx,Δy→0) f(Δx,Δy)/√(Δx²+Δy²)
=lim(Δx,Δy→0) [Δx²Δy/(Δx^4+Δy²)]/√(Δx²+Δy²)
-[Δx²Δy/(Δx^4+Δy²)]/√(Δx²+Δy²)≤[Δx²Δy/(Δx^4+Δy²)]/√(Δx²+Δy²)≤
[Δx²|Δy|/(Δx^4+Δy²)]/√(Δx²+Δy²)
而:
-[Δx²Δy/(Δx^4+Δy²)]/√(Δx²+Δy²) ≥-[(Δx^4+Δy²)/2(Δx^4+Δy²)]/√(Δx²+Δy²)
=(-1/2)/√(Δx²+Δy²)
[Δx²|Δy|/(Δx^4+Δy²)]/√(Δx²+Δy²) ≤(1/2)/√(Δx²+Δy²)
lim(Δx,Δy→0) (-1/2)/√(Δx²+Δy²) =0
lim(Δx,Δy→0) (1/2)/√(Δx²+Δy²) =0
根据夹逼准则:
lim(Δx,Δy→0) o(ρ)/ρ =0
∴该函数在(0,0)处可微!
lim(x,y→0)f(x,y)
=lim(x,y→0) x²y/(x^4+y²)
令:y=kx²,则:
x²y/(x^4+y²)
=k/(1+k²)
显然,极限值与k的取值有关,根据极限唯一性,原极限不存在!
∴
该函数在(0,0)不连续!
f'x(0,0)
=lim(Δx→0)[f(Δx,0)-f(0,0)]/Δx
=lim(Δx→0) 0/Δx
=0
f'y(0,0)
=lim(Δy→0)[f(0,Δy)-f(0,0)]/Δy
=lim(Δx→0) 0/Δy
=0
Δf=f(Δx,Δy)-0=o(ρ),其中ρ=√(Δx²+Δy²)
lim(Δx,Δy→0) o(ρ)/ρ
=lim(Δx,Δy→0) f(Δx,Δy)/√(Δx²+Δy²)
=lim(Δx,Δy→0) [Δx²Δy/(Δx^4+Δy²)]/√(Δx²+Δy²)
-[Δx²Δy/(Δx^4+Δy²)]/√(Δx²+Δy²)≤[Δx²Δy/(Δx^4+Δy²)]/√(Δx²+Δy²)≤
[Δx²|Δy|/(Δx^4+Δy²)]/√(Δx²+Δy²)
而:
-[Δx²Δy/(Δx^4+Δy²)]/√(Δx²+Δy²) ≥-[(Δx^4+Δy²)/2(Δx^4+Δy²)]/√(Δx²+Δy²)
=(-1/2)/√(Δx²+Δy²)
[Δx²|Δy|/(Δx^4+Δy²)]/√(Δx²+Δy²) ≤(1/2)/√(Δx²+Δy²)
lim(Δx,Δy→0) (-1/2)/√(Δx²+Δy²) =0
lim(Δx,Δy→0) (1/2)/√(Δx²+Δy²) =0
根据夹逼准则:
lim(Δx,Δy→0) o(ρ)/ρ =0
∴该函数在(0,0)处可微!
追问
除了夹逼定理还可以用其他证吗
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询